SAND2014-5015
Unlimited Release
July 2014
Updated November 6, 2015

Dakota, A Multilevel Parallel Object-Oriented Framework for
Design Optimization, Parameter Estimation, Uncertainty

Quantification, and Sensitivity Analysis:
Version 6.3 Reference Manual

Brian M. Adams, Mohamed S. Ebeida, Michael S. Eldred, John D. Jakeman,
Laura P. Swiler, J. Adam Stephens, Dena M. Vigil, Timothy M. Wildey
Optimization and Uncertainty Quantification Department

William J. Bohnhoff
Radiation Transport Department

Keith R. Dalbey
Mission Analysis and Simulation Department

John P. Eddy
System Readiness and Sustainment Technologies Department

Russell W. Hooper
Multiphysics Applications Department

Kenneth T. Hu
Validation and Uncertainty Quantification Department

Lara E. Bauman, Patricia D. Hough
Quantitative Modeling and Analysis Department

Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185

Ahmad Rushdi
Institute for Computational and Engineering Sciences

The University of Texas at Austin
P.O. Box 4.102
Austin, TX 78712



Abstract

The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible
and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms
for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliabil-
ity, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitiv-
ity/variance analysis with design of experiments and parameter study methods. These capabilities may be used
on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer
nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement
abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a flexible
and extensible problem-solving environment for design and performance analysis of computational models on
high performance computers.

This report serves as a reference manual for the commands specification for the Dakota software, providing
input overviews, option descriptions, and example specifications.



Contents

1 Main Page 7
1.1 HowtoUsethisManual . .. .. ... ... . . . . .. i e e 7
2 Running Dakota 9
2.1 Usage . . . .. e 9
22 Examples . . ..o e e 10
2.3 Execution Phases . . . . . . . . . .. e e e e e e e 10
2.4 Restarting Dakota Studies . . . . . . . ... 11
2.5 The Dakota Restart Utility . . . . . . . . . . . . . i e e e e e e e 12
3 Test Problems 17
3.1 Textbook . . . . e e e e e 17
3.2 Rosenbrock . . . . . ... e e e e e 20
4 Dakota Input Specification 21
4.1 Dakota NIDR . . . . . . . . . e e e 21
4.2 TInput Spec OVEIVIEW . . . . . . o ot ittt e e e e 21
43 SampleInputFiles . . . . . . . . . e 23
4.4 Input SPec SUMMATY . . . . v v v v v et e e e e e e e e e e e e e e e e e e e 27
5 Topics Area 75
5.0 admin ... L e e e e e e e 75
5.2 dakota IO . . . . .. e e e e e e 76
5.3 dakota_Concepts . . . . . . . .. e e e e e e e e e e e e e e 87
54 models . . ... e e e e 110
5.5 variables . . . .. L e e e e e 114
5.6 TESPOMSES . v v v v v e e e e e e e e e e e e e e e e e e e e e e e e e e e e 120
5.7 Anterface . . ... L. e e e e e e 121
5.8 methods . . . . . L e e e e e 124
5.9 advanced_topiCs . . . . . . ... e e e e e e e e e e 141
5.10 packages . . . . . oL e e e e 145
6 Keywords Area 157
6.1 environment . . . . . ... L L e e e e e e e e e e 158
6.2 method . . . . . . . . e 190
6.3 model . . ... e e e e e 1819
6.4 variables . . . . . . L e e e 1964
6.5 interface . . . . . . . .. L 2112



6 CONTENTS

6.0 TESPOMSES . + v v v v e e e e e e e e e e e e e e e e e e e e e e e e e e 2165

Bibliographic References 2256



Chapter 1
Main Page

The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible, ex-
tensible interface between analysis codes and iteration methods.

Author

Brian M. Adams, Lara E. Bauman, William J. Bohnhoff, Keith R. Dalbey, John P. Eddy, Mohamed S. Ebeida,
Michael S. Eldred, Russell W. Hooper, Patricia D. Hough, Kenneth T. Hu, John D. Jakeman, Ahmad Rushdi,
Laura P. Swiler, J. Adam Stephens, Dena M. Vigil, Timothy M. Wildey

The Reference Manual documents all the input keywords that can appear in a Dakota input file to configure a
Dakota study. Its organization closely mirrors the structure of dakota. input.summary. For more informa-
tion see Dakota Input Specification. For information on software structure, refer to the Developers Manual [3],
and for a tour of Dakota features and capabilities, including a tutorial, refer to the User’s Manual (Adams et al.,
2010) [4].

1.1 How to Use this Manual

e To learn how to run Dakota from the command line, see Running Dakota
e To learn to how to restart Dakota studies, see Restarting Dakota Studies
e To learn about the Dakota restart utility, see The Dakota Restart Utility

To find more information about a specific keyword
1. Use the search box at the top right (currently only finds keyword names)
2. Browse the Keywords tree on the left navigation pane
3. Look at the Dakota Input Specification
4. Navigate through the keyword pages, starting from the Keywords Area
To find more information about a Dakota related topic
1. Browse the Topics Area on the left navigation pane
2. Navigate through the topics pages, starting from the Topics Area

A small number of examples are included (see Sample Input Files) along with a description of the test prob-
lems (see Test Problems).
A bibliography for the Reference Manual is provided in Bibliographic References



CHAPTER 1. MAIN PAGE



Chapter 2

Running Dakota

The Dakota executable file is named dakota (dakota.exe on Windows) and is most commonly run from a
terminal or command prompt.

2.1 Usage

If the dakota command is entered at the command prompt without any arguments, a usage message similar to
the following appears:

usage: dakota [options and <args>]
-help (Print this summary)
-version (Print Dakota version number)
—input <$val> (REQUIRED Dakota input file $val)
—output <$val> (Redirect Dakota standard output to file $val)
—error <$val> (Redirect Dakota standard error to file S$Sval)
-parser <$val> (Parsing technology: nidr[strict][:dumpfile])
-no_input_echo (Do not echo Dakota input file)
—check (Perform input checks)

-pre_run [$val] (Perform pre-run (variables generation) phase)
-run [$val] (Perform run (model evaluation) phase)
-post_run [$val] (Perform post-run (final results) phase)

-read_restart [$val] (Read an existing Dakota restart file $val)
-stop_restart <$val> (Stop restart file processing at evaluation $val)
-write_restart [$val] (Write a new Dakota restart file S$Sval)

Of these command line options, only input is required, and the —input switch can be omitted if the input
file name is the final item appearing on the command line (see Examples); all other command-line inputs are
optional.

e help prints the usage message above.
e version prints version information for the executable.

e check invokes a dry-run mode in which the input file is processed and checked for errors, but the study is
not performed.

e input provides the name of the Dakota input file.

e output and error options provide file names for redirection of the Dakota standard output (stdout) and
standard error (stderr), respectively.



10 CHAPTER 2. RUNNING DAKOTA

e The parser option is for debugging and will not be further described here.

e By default, Dakota will echo the input file to the output stream, but no_input_echo can override this
behavior.

e read.restart and write_restart commands provide the names of restart databases to read from
and write to, respectively.

e stop_restart command limits the number of function evaluations read from the restart database (the
default is all the evaluations) for those cases in which some evaluations were erroneous or corrupted. Restart
management is an important technique for retaining data from expensive engineering applications.

e —pre_run, —run, and -post_run instruct Dakota to run one or more execution phases, excluding others.
The commands must be followed by filenames as described in Execution Phases.

Command line switches can be abbreviated so long as the abbreviation is unique, so the following are valid,
unambiguous specifications: —-h, -v, -c, -1, -0, —e, —s, —w, —re, —pr, —ru, and —po and can be used in place
of the longer forms of the command line options.

For information on restarting Dakota, see Restarting Dakota Studies and The Dakota Restart Utility.

2.2 Examples

To run Dakota with a particular input file, the following syntax can be used:
dakota —-i dakota.in

or more simply
dakota dakota.in

This will echo the standard output (stdout) and standard error (stderr) messages to the terminal. To redirect
stdout and stderr to separate files, the —o and —e command line options may be used:

dakota -i dakota.in -o dakota.out -e dakota.err
or
dakota -o dakota.out -e dakota.err dakota.in

Alternatively, any of a variety of Unix redirection variants can be used. Refer to[7] for more information on
Unix redirection. The simplest of these redirects stdout to another file:

dakota dakota.in > dakota.out

2.3 Execution Phases

Dakota has three execution phases: pre-run, run, and post-run.

e pre-run can be used to generate variable sets
e run (core run) invokes the simulation to evaluate variables, producing responses

e post—-run accepts variable/response sets and analyzes the results (for example, calculate correlations
from a set of samples). Currently only two modes are supported and only for sampling, parameter study,
and DACE methods:

(1) pre-run only with optional tabular output of variables:
dakota -i dakota.in -pre_run [::myvariables.dat]
(2) post-run only with required tabular input of variables/responses:

dakota -i dakota.in -post_run myvarsresponses.dat::



2.4. RESTARTING DAKOTA STUDIES 11

2.4 Restarting Dakota Studies

Dakota is often used to solve problems that require repeatedly running computationally expensive simulation
codes. In some cases you may want to repeat an optimization study, but with a tighter final convergence tolerance.
This would be costly if the entire optimization analysis had to be repeated. Interruptions imposed by computer us-
age policies, power outages, and system failures could also result in costly delays. However, Dakota automatically
records the variable and response data from all function evaluations so that new executions of Dakota can pick up
where previous executions left off. The Dakota restart file (dakota . rst by default) archives the tabulated inter-
face evaluations in a binary format. The primary restart commands at the command line are ~read_restart,
-write_restart, and -stop_restart.

2.4.1 Writing Restart Files

To write a restart file using a particular name, the ~-write_restart command line input (may be abbreviated
as —w) is used:

dakota -i dakota.in -write_restart my_restart_file

If no -write_restart specification is used, then Dakota will still write a restart file, but using the default
name dakota. rst instead of a user-specified name.

To turn restart recording off, the user may use the restart_file keyword, in the interface block. This can
increase execution speed and reduce disk storage requirements, but at the expense of a loss in the ability to recover
and continue a run that terminates prematurely. This option is not recommended when function evaluations are
costly or prone to failure. Please note that using the deactivate restart_file specification will result in a
zero length restart file with the default name dakota.rst, which can overwrite an exiting file.

2.4.2 Using Restart Files

To restart Dakota from a restart file, the ~-read_restart command line input (may be abbreviated as —r) is
used:

dakota -i dakota.in -read_restart my_restart_file

If no ~read_restart specification is used, then Dakota will not read restart information from any file (i.e.,

the default is no restart processing).

To read in only a portion of a restart file, the —stop_restart control (may be abbreviated as —s) is used to
specify the number of entries to be read from the database. Note that this integer value corresponds to the restart
record processing counter (as can be seen when using the print utility (see The Dakota Restart Utility) which
may differ from the evaluation numbers used in the previous run if, for example, any duplicates were detected
(since these duplicates are not recorded in the restart file). In the case of a —~stop_restart specification, it is
usually desirable to specify a new restart file using —~-write_restart so as to remove the records of erroneous
or corrupted function evaluations. For example, to read in the first 50 evaluations from dakota.rst:

dakota -i dakota.in -r dakota.rst -s 50 -w dakota_new.rst

The dakota_new. rst file will contain the 50 processed evaluations from dakota.rst as well as any
new evaluations. All evaluations following the 50*" in dakota . rst have been removed from the latest restart
record.

2.4.3 Appending to a Restart File

If the -write_restart and —read_restart specifications identify the same file (including the case where
-write_restart is not specified and ~read_restart identifies dakota.rst), then new evaluations will
be appended to the existing restart file.



12 CHAPTER 2. RUNNING DAKOTA

2.4.4 Working with multiple Restart Files

If the -write_restart and —~read_restart specifications identify different files, then the evaluations read
from the file identified by —~read_restart are first written to the ~write_restart file. Any new evalua-
tions are then appended to the ~-write_restart file. In this way, restart operations can be chained together
indefinitely with the assurance that all of the relevant evaluations are present in the latest restart file.

2.4.5 How it Works

Dakota’s restart algorithm relies on its duplicate detection capabilities. Processing a restart file populates the list of
function evaluations that have been performed. Then, when the study is restarted, it is started from the beginning
(not a warm start) and many of the function evaluations requested by the iterator are intercepted by the duplicate
detection code. This approach has the primary advantage of restoring the complete state of the iteration (including
the ability to correctly detect subsequent duplicates) for all methods/iterators without the need for iterator-specific
restart code. However, the possibility exists for numerical round-off error to cause a divergence between the
evaluations performed in the previous and restarted studies. This has been rare in practice.

2.5 The Dakota Restart Utility

The Dakota restart utility program provides a variety of facilities for managing restart files from Dakota execu-
tions. The executable program name is dakota_restart_util and it has the following options, as shown by
the usage message returned when executing the utility without any options:

Usage:
dakota_restart_util command <argl> [<arg2> <arg3> ...] —--options
dakota_restart_util print <restart_file>
dakota_restart_util to_neutral <restart_file> <neutral_file>
dakota_restart_util from _neutral <neutral file> <restart_file>

dakota_restart_util to_tabular <restart_file> <text_file> [--custom_annotated [header] [eval_id]
dakota_restart_util remove <double> <old_restart_file> <new_restart_file>
dakota_restart_util remove_ids <int_1> ... <int_n> <old_restart_file> <new_restart_file>
dakota_restart_util cat <restart_file 1> ... <restart_file n> <new_restart_file>
options:
——help show dakota_restart_util help message

-—-custom_annotated arg tabular file options: header, eval_id, interface_id

Several of these functions involve format conversions. In particular, the binary format used for restart files can
be converted to ASCII text and printed to the screen, converted to and from a neutral file format, or converted to
a tabular format for importing into 3rd-party graphics programs. In addition, a restart file with corrupted data can
be repaired by value or id, and multiple restart files can be combined to create a master database.

2.5.1 Print Command

The print option is useful to show contents of a restart file, since the binary format is not convenient for direct
inspection. The restart data is printed in full precision, so that exact matching of points is possible for restarted
runs or corrupted data removals. For example, the following command

dakota_restart_util print
dakota.rst

results in output similar to the following:

Parameters:
1.8000000000000000e+00 intake_dia

[interface_1i



2.5. THE DAKOTA RESTART UTILITY

1.

Active response data:
Active set vector = { 3
-2.
-4.
-4.
1.

-4.3644298963447897e-
1.3855136437818300e-
0.0000000000000000e+00
0.0000000000000000e+00

0000000000000000e+00

333}

4355973813420619e+00
7428486677140930e-01
5000000000000001e-01
3971143170299741e-01

flatness

obj_fn

nln_ineqg con_1
nln_ineqg con_2
nln_ineqg con_3

01 1.4999999999999999%9e-01 ] obj_fn gradient
01 0.0000000000000000e+00 ] nln_ineqg con_1 gradient

Restart record 2 (evaluation id 2)
Parameters:
2.1640000000000001e+00
1.7169994018008317e+00

Active response data:
Active set vector = { 3
-2.
6.
-3.
8.

...<snip>...

Restart file processing

-4.3644298963447897e-
2.9814239699997572e+01
0.0000000000000000e+00
0.0000000000000000e+00

333}

4869127192988878e+00
9256958799989843e-01
4245008972987528e-01
7142207937157910e-03

1.4999999999999999%9e-01 ] nln_ineqg_con_2 gradient
-1.9485571585149869e-01 ] nln_ineq_con_3 gradient

intake_dia
flatness

obj_fn

nln_ineqg con_1
nln_ineqg con_2
nln_ineq con_3

01 1.4999999999999999e-01 ] obj_fn gradient

0.0000000000000000e+00 ] nln_ineg con_1 gradient
1.4999999999999999%9e-01 ] nln_ineqg _con_2 gradient
-1.6998301774282701e-01 ] nln_ineqg_con_3 gradient

completed: 11 evaluations retrieved.

2.5.2 Neutral File Format

A Dakota restart file can be converted to a neutral file format using a command like the following:

dakota_restart_util to_neutral dakota.rst dakota.neu

which results in a report similar to the following:

Writing neutral file dakota.neu
completed: 11 evaluations retrieved.

Restart file processing

Similarly, a neutral file can be returned to binary format using a command like the following:

dakota_restart_util from_neutral dakota.neu dakota.rst

which results in a report similar to the following:

Reading neutral file dakota.neu
Writing new restart file dakota.rst
completed: 11 evaluations retrieved.

Neutral file processing

13

The contents of the generated neutral file are similar to the following (from the first two records for the

Cylinder example in[4]).

6 7 2 1.8000000000000000e+00 intake_dia 1.0000000000000000e+00 flatness 0 0 0 O

NULL 4 2 1 03 33 31 2 obj_fn nln_ineg con_1 nln_ineqg con_2 nln_ineg con_3
—2.4355973813420619e+00 -4.7428486677140930e-01 -4.5000000000000001e-01
1.3971143170299741e-01 -4.3644298963447897e-01 1.4999999999999999%e-01

1.3855136437818300e-01

0.0000000000000000e+00 0.0000000000000000e+00



14 CHAPTER 2. RUNNING DAKOTA

1.499999999999999%9e-01 0.0000000000000000e+00 -1.9485571585149869%e-01 1
6 7 2 2.1640000000000001e+00 intake_dia 1.7169994018008317e+00 flatness 0 0 0 O
NULL 4 2 1 0 3 3 3 31 2 obj_fn nln_ineq _con_1 nln_ineqg con_2 nln_ineqg_con_3
-2.4869127192988878e+00 6.9256958799989843e~-01 —-3.4245008972987528e-01
.7142207937157910e-03 -4.3644298963447897e-01 1.4999999999999999%e-01
.9814239699997572e+01 0.0000000000000000e+00 0.0000000000000000e+00
.4999999999999999%9e-01 0.0000000000000000e+00 -1.6998301774282701e-01 2

=N o

This format is not intended for direct viewing (porint should be used for this purpose). Rather, the neutral
file capability has been used in the past for managing portability of restart data across platforms (recent use of
more portable binary formats has largely eliminated this need) or for advanced repair of restart records (in cases
where the remove command was insufficient).

2.5.3 Tabular Format

Conversion of a binary restart file to a tabular format enables convenient import of this data into 3rd-party post-
processing tools such as Matlab, TECplot, Excel, etc. This facility is nearly identical to the output activated by
the tabular_data keyword in the Dakota input file specification, but with two important differences:

1. No function evaluations are suppressed as they are with tabular_data (i.e., any internal finite difference
evaluations are included).

2. The conversion can be performed later, i.e., for Dakota runs executed previously.
An example command for converting a restart file to tabular format is:
dakota_restart_util to_tabular dakota.rst dakota.m
which results in a report similar to the following:

Writing tabular text file dakota.m
Restart file processing completed: 10 evaluations tabulated.

The contents of the generated tabular file are similar to the following (from the example in the Restart section
of[4]). Note that while evaluations resulting from numerical derivative offsets would be reported (as described
above), derivatives returned as part of the evaluations are not reported (since they do not readily fit within a
compact tabular format):

%$eval_id interface x1 x2 obj_fn nln_ineq _con_1 nln_ineq _con_2
1 NO_1ID 0.9 1.1 0.0002 0.26 0.76
2 NO_1ID 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 NO_ID 0.89991 1.1 0.0002003604863 0.2598380081 0.760045
4 NO_ID 0.9 1.10011 0.0002004407265 0.259945 0.7602420121
5 NO_ID 0.9 1.09989 0.0001995607255 0.260055 0.7597580121
6 NO_1ID 0.58256179 0.4772224441 0.1050555937 0.1007670171 -0.06353963386
7 NO_ID 0.5826200462 0.4772224441 0.1050386469 0.1008348962 -0.06356876195
8 NO_ID 0.5825035339 0.4772224441 0.1050725476 0.1006991449 -0.06351050577
9 NO_ID 0.58256179 0.4772701663 0.1050283245 0.100743156 -0.06349408333
10 NO_1ID 0.58256179 0.4771747219 0.1050828704 0.1007908783 -0.06358517983

Controlling tabular format: The command-line option ——custom_annotated gives control of headers
in the resulting tabular file. It supports options

e header: include %-commented header row with labels
e eval_id: include leading column with evaluation ID

e interface_id: include leading column with interface ID



2.5. THE DAKOTA RESTART UTILITY 15
For example, to recover Dakota 6.0 tabular format, which contained a header row, leading column with evaluation
ID, but no interface ID:

dakota_restart_util to_tabular dakota.rst dakota.m —--custom_annotated header eval_id

Resulting in

$eval_id x1 x2 obj_fn nln_ineqg con_1 nln_ineqg con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.90009 1.1 0.0001996404857 0.2601620081 0.759955
3 0.89991 1.1 0.0002003604863 0.2598380081 0.760045

2.5.4 Concatenation of Multiple Restart Files

In some instances, it is useful to combine restart files into a single master function evaluation database. For
example, when constructing a data fit surrogate model, data from previous studies can be pulled in and reused to
create a combined data set for the surrogate fit. An example command for concatenating multiple restart files is:

dakota_restart_util cat dakota.rst.l dakota.rst.2 dakota.rst.3 dakota.rst.all
which results in a report similar to the following:

Writing new restart file dakota.rst.all

dakota.rst.l processing completed: 10 evaluations retrieved.
dakota.rst.2 processing completed: 110 evaluations retrieved.
dakota.rst.3 processing completed: 65 evaluations retrieved.

The dakota.rst.all database now contains 185 evaluations and can be read in for use in a subsequent
Dakota study using the —~read_restart option to the dakota executable.

2.5.5 Removal of Corrupted Data

On occasion, a simulation or computer system failure may cause a corruption of the Dakota restart file. For
example, a simulation crash may result in failure of a post-processor to retrieve meaningful data. If 0’s (or other
erroneous data) are returned from the user’s analysis_driver, then this bad data will get recorded in the
restart file. If there is a clear demarcation of where corruption initiated (typical in a process with feedback, such
as gradient-based optimization), then use of the —stop_restart option for the dakota executable can be
effective in continuing the study from the point immediately prior to the introduction of bad data. If, however,
there are interspersed corruptions throughout the restart database (typical in a process without feedback, such as

sampling), then the remove and remove_ids options of dakota_restart_util can be useful.
An example of the command syntax for the remove option is:

dakota_restart_util remove 2.e-04 dakota.rst dakota.rst.repaired
which results in a report similar to the following:

Writing new restart file dakota.rst.repaired
Restart repair completed: 65 evaluations retrieved, 2 removed, 63 saved.

where any evaluations in dakota. rst having an active response function value that matches 2 .e-04 within

machine precision are discarded when creating dakota.rst.repaired.
An example of the command syntax for the remove_ids option is:

dakota_restart_util remove_ids 12 15 23 44 57 dakota.rst dakota.rst.repaired
which results in a report similar to the following:

Writing new restart file dakota.rst.repaired
Restart repair completed: 65 evaluations retrieved, 5 removed, 60 saved.



16 CHAPTER 2. RUNNING DAKOTA

where evaluation ids 12, 15, 23, 44, and 57 have been discarded when creating dakota.rst.repaired.
An important detail is that, unlike the —stop_restart option which operates on restart record numbers, the
remove_ids option operates on evaluation ids. Thus, removal is not necessarily based on the order of appearance
in the restart file. This distinction is important when removing restart records for a run that contained either
asynchronous or duplicate evaluations, since the restart insertion order and evaluation ids may not correspond in
these cases (asynchronous evaluations have ids assigned in the order of job creation but are inserted in the restart
file in the order of job completion, and duplicate evaluations are not recorded which introduces offsets between
evaluation id and record number). This can also be important if removing records from a concatenated restart file,
since the same evaluation id could appear more than once. In this case, all evaluation records with ids matching
the remove_ids list will be removed.

If neither of these removal options is sufficient to handle a particular restart repair need, then the fallback
position is to resort to direct editing of a neutral file to perform the necessary modifications.



Chapter 3

Test Problems

This page contains additional information about two test problems that are used in Dakota examples throughout
the Dakota manuals Textbook and Rosenbrock.

Many of these examples are also used as code verification tests. The examples are run periodically and the
results are checked against known solutions. This ensures that the algorithms are correctly implemented.

Additional test problems are described in the User’s Manual.

3.1 Textbook

The two-variable version of the “textbook” test problem provides a nonlinearly constrained optimization test case.
It is formulated as:

minimize f= (x;—1)*+ (zp —1)*
o
2
x
gp=13— 75 <0

0.5 <z, <58
—29<29<29

subject to g1 = w? — <0 (textbookform)

Contours of this test problem are illustrated in the next two figures.

17



18 CHAPTER 3. TEST PROBLEMS

SOV
N

WL

n
=

X2

(L= textbook
constraint g1<0
----- constraint g2<0

-3 -2 -1 0 1 2 3 4
X1

Figure 3.1: Contours of the textbook problem on the [-3,4] x [-3,4] domain. The feasible region lies at the
intersection of the two constraints g_1 (solid) and g_2 (dashed).

[

o
[

1
0.

o
a

0.2 1T \\\ ‘u\\v‘\‘\ \
I
\\\\\\“\\\\\\\‘\\\\)\\(‘\\\\\\\\\‘
op \

T
i\
i\ \\\

X2

\ constraint g1<0
""" constraint g2<0

-1 -0.5

X1

Figure 3.2: Contours of the textbook problem zoomed into an area containing the constrained optimum point (X _-
1,x.2) = (0.5,0.5). The feasible region lies at the intersection of the two constraints g_1 (solid) and g_2 (dashed).

For the textbook test problem, the unconstrained minimum occurs at (x1, z2) = (1, 1). However, the inclusion
of the constraints moves the minimum to (21, z2) = (0.5, 0.5). Equation textbookform presents the 2-dimensional



3.1. TEXTBOOK 19

form of the textbook problem. An extended formulation is stated as

minimize f= Z(xl —1)!
i=1

subject to g1 = :c% — <0 (tbe)

1\3‘[\?

g2 = a3 — 2
y—g2_ 2L
2 9

0.5 <z <58
—29<2,<29

<0

where n is the number of design variables. The objective function is designed to accommodate an arbitrary
number of design variables in order to allow flexible testing of a variety of data sets. Contour plots for the n = 2
case have been shown previously.
For the optimization problem given in Equation tbe, the unconstrained solution
(num_nonlinear_inequality_constraints setto zero) for two design variables is:

rr = 1.0

To = 1.0
with

= 00

The solution for the optimization problem constrained by g; \ (num_.nonlinear_inequality_constraints
set to one) is:

1 = 0.763
o = 1.16
with
o= 0.00388
g7 = 0.0 (active)

The solution for the optimization problem constrained by ¢g; and g2\ (num_nonlinear_inequality -
constraints setto two) is:

rz1 = 0.500
o = 0.500
with
= 0125
g7 = 0.0 (active)
g5 = 0.0 (active)

Note that as constraints are added, the design freedom is restricted (the additional constraints are active at the
solution) and an increase in the optimal objective function is observed.



20 CHAPTER 3. TEST PROBLEMS

3.2 Rosenbrock

The Rosenbrock function[34] is a well-known test problem for optimization algorithms. The standard formulation
includes two design variables, and computes a single objective function. This problem can also be posed as a
least-squares optimization problem with two residuals to be minimzed because the objective function is the sum
of squared terms.

Standard Formulation

The standard two-dimensional formulation can be stated as

minimize f=100(zy — %)%+ (1 — 1)? (rosenstd)

Surface and contour plots for this function are shown in the Dakota User’s Manual.
The optimal solution is:

rr = 1.0

o = 1.0
with

f* = 00

A Least-Squares Optimization Formulation
This test problem may also be used to exercise least-squares solution methods by recasting the standard prob-

lem formulation into:

minimize f=(f1)%+ (f2)? (rosenls)
where
fi = 10(zp — 22) (rosenrl)
and
fa=1-—1x1 (rosenr2)

are residual terms.

The included analysis driver can handle both formulations. In the Dakota/test directory, the rosenbrock
executable (compiled from Dakota_Source/test/rosenbrock. cpp) checks the number of response func-
tions passed in the parameters file and returns either an objective function (as computed from Equation rosenstd)
for use with optimization methods or two least squares terms (as computed from Equations rosenr]1 -rosenr2 ) for
use with least squares methods. Both cases support analytic gradients of the function set with respect to the design
variables. See the User’s Manual for examples of both cases (search for Rosenbrock).



Chapter 4

Dakota Input Specification

4.1 Dakota NIDR

Valid Dakota input is dictated governed by the NIDR[30] input specification file, dakota . input .nspec. This
file is used by a code generator to create parsing system components that are compiled into Dakota. Therefore,
dakota.input.nspec and its derived summary, dakota.input.summary, are the definitive source for input syntax,
capability options, and optional and required capability sub-parameters for any given Dakota version.

Beginning users may find dakota.input.summary overwhelming or confusing and will likely derive more ben-
efit from adapting example input files to a particular problem. Some examples can be found here: Sample Input
Files. Advanced users can master the many input specification possibilities by understanding the structure of the
input specification file.

4.2 Input Spec Overview

Refer to the dakota.input.summary file, in Input Spec Summary, for current input specifications.

e The summary describes every keyword including:

Whether it is required or optional

Whether it takes ARGUMENTS (always required) Additional notes about ARGUMENTS can be found
here: Specifying Arguments.

Whether it has an ALTAS, or synonym

Which additional keywords can be specified to change its behavior
e Additional details and descriptions are described in Keywords Area

e For additional details on NIDR specification logic and rules, refer to[30] (Gay, 2008).

4.2.1 Common Specification Mistakes

Spelling mistakes and omission of required parameters are the most common errors. Some causes of errors are
more obscure:

e Documentation of new capability sometimes lags its availability in source and executables, especially stable
releases. When parsing errors occur that the documentation cannot explain, reference to the particular input
specification used in building the executable, which is installed alongside the executable, will often resolve
the errors.

21



22 CHAPTER 4. DAKOTA INPUT SPECIFICATION

e If you want to compare results with those obtained using an earlier version of Dakota (prior to 4.1), your
input file for the earlier version must use backslashes to indicate continuation lines for Dakota keywords.
For example, rather than

# Comment about the following "responses" keyword...
responses,
objective_functions = 1
# Comment within keyword "responses"
analytic_gradients
# Another comment within keyword "responses"
no_hessians

you would need to write

# Comment about the following "responses" keyword...

responses, \
objective_functions = 1 \
# Comment within keyword "responses" \
analytic_gradients \

# Another comment within keyword "responses" \

no_hessians

with no white space (blanks or tabs) after the \ character.

In most cases, the NIDR system provides error messages that help the user isolate errors in Dakota input files.

4.2.2 Specifying Arguments

Some keywords, such as those providing bounds on variables, have an associated list of values or strings, referred
to as arguments.
When the same value should be repeated several times in a row, you can use the notation Nxvalue instead of

repeating the value N times.
For example

lower_bounds -2.0 -2.0 -2.0
upper_bounds 2.0 2.0 2.0

could also be written

lower_bounds 3%-2.0
upper_bounds 3% 2.0

(with optional spaces around the x* ).
Another possible abbreviation is for sequences: L:S:U (with optional spaces around the : ) is expanded to L

L+S L+2%S ... U, and L:U (with no second colon) is treated as L:1:U.

For example, in one of the test examples distributed with Dakota (test case 2 of test/dakota_ug_—
textbook_sop_lhs.in),

histogram point = 2

abscissas = 50. 60. 70. 80. 90.
30. 40. 50. 60. 70.
10 20 30 20 10
10 20 30 20 10

counts

could also be written

histogram point = 2

abscissas 50 : 10 : 90
30 : 10 : 70
10:10:30 20 10
10:10:30 20 10

counts



4.3. SAMPLE INPUT FILES 23

Count and sequence abbreviations can be used together. For example

response_levels
0.0 0.1 0.2
0.0 0.1 0.2

o o |
w W
o o
NS
o o
oo
o o
ENEN
o o
S5
o o
© ®
o o
© ©
o
oo

can be abbreviated

response_levels =
2x0.0:0.1:1.0

4.3 Sample Input Files

A Dakota input file is a collection of fields from the dakota.input.summary file that describe the problem to be
solved by Dakota. Several examples follow.
Sample 1: Optimization
The following sample input file shows single-method optimization of the Textbook Example (see Textbook)
using DOT’s modified method of feasible directions. A similar file is available as Dakota/examples/users/textbook—
_opt_conmin.in.

# Dakota Input File: textbook_opt_conmin.in
environment
graphics
tabular_data
tabular_data_file = ’textbook_opt_conmin.dat’

method
# dot_mmfd #DOT performs better but may not be available
conmin_mfd

max_iterations = 50
convergence_tolerance = le-4
variables
continuous_design = 2
initial point 0.9 1.1
upper_bounds 5.8 2.9
lower_bounds 0.5 -2.9
descriptors rx1" k2’
interface
direct
analysis_driver = "text_book’
responses
objective_functions = 1
nonlinear_inequality_constraints = 2

numerical_gradients
method_source dakota
interval_type central
fd_gradient_step_size = l.e-4
no_hessians

Sample 2: Least Squares (Calibration)

The following sample input file shows a nonlinear least squares (calibration) solution of the Rosenbrock Exam-
ple (see Rosenbrock) using the NL2SOL method. A similar file is available as Dakota/examples/users/rosen—
_optnls.in

# Dakota Input File: rosen_opt_nls.in
environment



24

graphics
tabular_data
tabular_data_file = ’'rosen_opt_nls.dat’

method
max_iterations = 100
convergence_tolerance = le-4
nl2sol

model
single

variables
continuous_design = 2
initial point -1.2 1.0

lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors rx1’ "x2"

interface

analysis_driver = ’rosenbrock’
direct

responses

calibration_terms = 2

analytic_gradients
no_hessians

Sample 3: Nondeterministic Analysis

CHAPTER 4. DAKOTA INPUT SPECIFICATION

The following sample input file shows Latin Hypercube Monte Carlo sampling using the Textbook Example
(see Textbook). A similar file is available as Dakota/test/dakota_ug textbook_lhs.in.

method,
sampling,
samples = 100 seed = 1
complementary distribution

response_levels = 3.6e+11l 4.0e+1l1 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05
sample_type lhs

variables,
normal_uncertain = 2
means = 248.89, 593.33
std_deviations = 12.4, 29.7
descriptors = 'TFln’ ’'TF2n’
uniform_uncertain = 2
lower_bounds = 199.3, 474.63
upper_bounds = 298.5, 712.
descriptors = 'TFlu’ ’'TF2u’
weibull uncertain = 2
alphas = 12., 30.
betas = 250., 590.
descriptors = '"TFlw’ 'TF2w’
histogram_bin_uncertain = 2
num_pairs = 3 4
abscissas =58 10 .1 .2 .3 .4
counts =17 21 0 12 24 12 O
descriptors = 'TF1lh’ ’TF2h’
histogram_point_uncertain = 1
num_pairs = 2

abscissas = 3 4



4.3. SAMPLE INPUT FILES 25

counts =11
descriptors = ’'TF3h’

interface,
fork asynch evaluation_concurrency = 5
analysis_driver = ’'text_book’
responses,
response_functions = 3

no_gradients
no_hessians

Sample 4: Parameter Study

The following sample input file shows a 1-D vector parameter study using the Textbook Example (see Text-
book). It makes use of the default environment and model specifications, so they can be omitted. A similar file is
available in the test directory as Dakota/examples/users/rosen_ps_vector.in.

# Dakota Input File: rosen_ps_vector.in
environment
graphics
tabular_data
tabular_data_file = ’'rosen_ps_vector.dat’

method
vector_parameter_study
final_point = 1.1 1.3
num_steps = 10

variables
continuous_design = 2
initial_point -0.3 0.2

descriptors rx1’ "x2"
interface
analysis_driver = ’rosenbrock’
direct
responses
objective_functions =1

no_gradients
no_hessians

Sample 5: Hybrid Strategy

The following sample input file shows a hybrid environment using three methods. It employs a genetic algo-
rithm, pattern search, and full Newton gradient-based optimization in succession to solve the Textbook Example
(see Textbook). A similar file is available as Dakota/examples/users/textbook_hybrid_strat.in.

environment
graphics
hybrid sequential
method_list = ’PS’ ’'PS2’ ’'NLP’

method

id_method = ’"PS’

model_pointer = "ML’
coliny_pattern_search stochastic
seed = 1234
initial_delta = 0.
threshold_delta =
solution_accuracy = 1l.e-10

e



26

exploratory_moves basic_pattern
#verbose output

method
id_method = ’"PS2’
model_pointer = 'M1’
max_function_evaluations = 10
coliny_pattern_search stochastic
seed = 1234
initial_delta = 0.1
threshold_delta = 1.e-4
solution_accuracy = 1.e-10
exploratory_moves basic_pattern
#verbose output

method
id_method = ’'NLP’
model_pointer = "M2’
optpp_newton
gradient_tolerance = l.e-12
convergence_tolerance = l.e-15
#verbose output

model
id_model = ’'M1’
single
variables_pointer = 'V1’
interface_pointer = 'I1’
responses_pointer = ’'R1’

model
id_model = ’'M2’
single
variables_pointer = V1’
interface_pointer = 'I1’
responses_pointer = ’'R2’

variables
id_variables = ’'V1/
continuous_design
initial_point O
upper_bounds 5.
lower_bounds 0
descriptors ’'x

interface
id_interface = "I1’
direct
analysis_driver= ’text_book’

responses
id_responses = ’'R1’
objective_functions = 1

no_gradients
no_hessians

responses
id_responses = ’"R2’
objective_functions = 1

analytic_gradients
analytic_hessians

CHAPTER 4. DAKOTA INPUT SPECIFICATION



4.4. INPUT SPEC SUMMARY 27

Additional example input files, as well as the corresponding output and graphics, are provided in the Tutorial
chapter of the Users Manual [4] (Adams et al., 2010).

4.4 Input Spec Summary

This file is derived automatically from dakota.input.nspec, which is used in the generation of parser system files
that are compiled into the Dakota executable. Therefore, these files are the definitive source for input syntax,
capability options, and associated data inputs. Refer to the Developers Manual information on how to modify the
input specification and propagate the changes through the parsing system.

Key features of the input specification and the associated user input files include:

¢ In the input specification, required individual specifications simply appear, optional individual and group
specifications are enclosed in [], required group specifications are enclosed in (), and either-or relationships
are denoted by the | symbol. These symbols only appear in dakota.input.nspec; they must not appear in
actual user input files.

e Keyword specifications (i.e., environment, method, model, variables, interface,and responses)
begin with the keyword possibly preceded by white space (blanks, tabs, and newlines) both in the input
specifications and in user input files. For readability, keyword specifications may be spread across several
lines. Earlier versions of Dakota (prior to 4.1) required a backslash character (\) at the ends of intermediate
lines of a keyword. While such backslashes are still accepted, they are no longer required.

e Some of the keyword components within the input specification indicate that the user must supply INTE—
GER, REAL, STRING, INTEGERLIST, REALLIST, or STRINGLIST data as part of the specification. In
a user input file, the "=" is optional, data in a LIST can be separated by commas or whitespace, and the
STRING data are enclosed in single or double quotes (e.g., ’ text _book’ or ’text_book™).

¢ In user input files, input is largely order-independent (except for entries in lists of data), case insensitive,
and white-space insensitive. Although the order of input shown in the Sample Input Files generally follows
the order of options in the input specification, this is not required.

¢ In user input files, specifications may be abbreviated so long as the abbreviation is unique. For example,
the npsol_sqgp specification within the method keyword could be abbreviated as npsol, but dot_sgp
should not be abbreviated as dot since this would be ambiguous with other DOT method specifications.

¢ In both the input specification and user input files, comments are preceded by #.

o ALIAS refers to synonymous keywords, which often exist for backwards compatability. Users are encour-
aged to use the most current keyword.

KEYWORDO1 environment
[ check ]
[ output_file STRING ]
[ error_file STRING ]
[ read_restart STRING
[ stop_restart INTEGER >= 0 ]
1
write_restart STRING ]
pre_run
[ input STRING ]
[ output STRING
[ annotated
|

( custom_annotated



28 CHAPTER 4. DAKOTA INPUT SPECIFICATION

[ header ]
[ eval_id ]
[ interface_id ]
]
I
( freeform
1
]
[ run
[ input STRING ]
[ output STRING ]
]
[ post_run
[ input STRING
[ annotated
|
( custom_annotated
[ header ]
[ eval_id ]
[ interface_id ]
]
\
( freeform
]
[ output STRING ]
]
[ graphics ]
tabular_data ALIAS tabular_graphics_data
[ tabular_data_file ALIAS tabular_graphics_file STRING ]
[ annotated
|
( custom_annotated
[ header ]
[ eval_id ]
[ interface_id ]
]

|
( freeform
]
[ output_precision INTEGER >= 0 ]
results_output
[ results_output_file STRING ]
]
[ top_method_pointer ALIAS method_pointer STRING ]

KEYWORD12 method
[ id_method STRING ]
[ output
debug
| verbose
| normal
| quiet
| silent
]
[ final_solutions INTEGER >= 0 ]
( hybrid
( sequential ALIAS uncoupled
( method_name_list STRINGLIST
[ model_pointer_list STRING ]
)
| method_pointer_list STRINGLIST
)



4.4. INPUT SPEC SUMMARY

embedded ALIAS coupled

( global_method_name STRING

[ global_model_pointer STRING ]
)

global_method_pointer STRING
local_method_name STRING

[ local_model_pointer STRING ]
)

| local_method_pointer STRING

[ local_search_probability REAL ]

collaborative
( method_name_list STRINGLIST
[ model_pointer_list STRING ]
)
| method_pointer_list STRINGLIST
)
[ iterator_servers INTEGER > 0 ]
iterator_scheduling
master
| peer
]

[ processors_per_iterator INTEGER > 0 ]

multi_start
( method_name STRING
[ model_pointer STRING ]
)
method_pointer STRING
[ random_starts INTEGER
[ seed INTEGER ]
]
[ starting_points REALLIST ]
iterator_servers INTEGER > 0 ]
[ iterator_scheduling
master
| peer
]
[ processors_per_iterator INTEGER > 0 ]

pareto_set
( method_name ALIAS opt_method_name STRING
[ model_pointer ALIAS opt_model_pointer STRING ]
)
method_pointer ALIAS opt_method_pointer STRING
[ random_weight_sets INTEGER
[ seed INTEGER ]
]
[ weight_sets ALIAS multi_objective_weight_sets REALLIST ]
iterator_servers INTEGER > 0 ]
iterator_scheduling
master
| peer
]
[ processors_per_iterator INTEGER > 0 ]

branch_and_bound

29



30 CHAPTER 4. DAKOTA INPUT SPECIFICATION

method_pointer STRING
|
( method_name STRING
[ model_pointer STRING ]
)
[ scaling ]
)
|
( surrogate_based_local
method_pointer ALIAS approx_method_pointer STRING
| method_name ALIAS approx_method_name STRING
model_pointer ALIAS approx_model_pointer STRING
[ soft_convergence_limit INTEGER ]
[ truth_surrogate_bypass ]
[ trust_region
[ initial_size REAL ]
[ minimum_size REAL ]
[ contract_threshold REAL ]
[ expand_threshold REAL ]
[ contraction_factor REAL ]
[ expansion_factor REAL ]
]

[ approx_subproblem
original_primary
| single_objective
| augmented_lagrangian_objective
| lagrangian_objective
original_constraints
| linearized_constraints
| no_constraints
]
[ merit_function
penalty_merit
| adaptive_penalty_merit
| lagrangian_merit
| augmented_lagrangian_merit
1
[ acceptance_logic
tr_ratio
| filter
]
[ constraint_relax
homotopy
]
max_iterations INTEGER >= 0 ]
convergence_tolerance REAL ]
constraint_tolerance REAL ]

( surrogate_based_global
method_pointer ALIAS approx_method_pointer STRING
| method_name ALIAS approx_method_name STRING
model_pointer ALIAS approx_model_pointer STRING
[ replace_points ]
[ max_iterations INTEGER >= 0 ]
)

( dot_frcg
[ max_iterations INTEGER >= 0 ]
[ convergence_tolerance REAL ]
[ constraint_tolerance REAL ]
[ speculative ]



4.4. INPUT SPEC SUMMARY

max_function_evaluations INTEGER >= 0 ]
scaling ]
linear_inequality_constraint_matrix REALLIST ]
linear_inequality_lower_bounds REALLIST ]
linear_inequality_upper_bounds REALLIST ]
linear_inequality_scale_types STRINGLIST ]
linear_inequality_scales REALLIST ]
linear_equality_constraint_matrix REALLIST ]
linear_equality_targets REALLIST ]
linear_equality_scale_types STRINGLIST ]
linear_equality_scales REALLIST ]
model_pointer STRING ]

)
| dot_mmfd
| dot_bfgs
| dot_slp
| dot_sqgp
|
( dot
frcg
| mmfd
| bfgs
| slp
| sap
[ max_iterations INTEGER >= 0 ]
[ convergence_tolerance REAL ]
[ constraint_tolerance REAL ]
[ speculative ]
[ max_function_evaluations INTEGER >= 0 ]
[ scaling ]
[ linear_inequality_constraint_matrix REALLIST ]
[ linear_inequality_lower_bounds REALLIST ]
[ linear_inequality_upper_bounds REALLIST ]
[ linear_inequality_scale_types STRINGLIST ]
[ linear_inequality_scales REALLIST ]
[ linear_equality_constraint_matrix REALLIST ]
[ linear_equality_targets REALLIST ]
[ linear_equality_scale_types STRINGLIST ]
[ linear_equality_scales REALLIST ]
[ model_pointer STRING ]

)
|
( conmin_frcg
max_iterations INTEGER >= 0 ]
convergence_tolerance REAL ]
constraint_tolerance REAL ]
speculative ]
max_function_evaluations INTEGER >= 0 ]
scaling ]
linear_inequality_constraint_matrix REALLIST ]
linear_inequality_lower_bounds REALLIST ]
linear_inequality_upper_bounds REALLIST ]
linear_inequality_scale_types STRINGLIST ]
linear_inequality_scales REALLIST ]
linear_equality_constraint_matrix REALLIST ]
linear_equality_targets REALLIST ]
linear_equality_scale_types STRINGLIST ]
linear_equality_scales REALLIST ]
model_pointer STRING ]

)
| conmin_mfd



CHAPTER 4. DAKOTA INPUT SPECIFICATION

( conmin

frcg

| mfd
max_iterations INTEGER >= 0 ]
convergence_tolerance REAL ]
constraint_tolerance REAL ]
speculative ]
max_function_evaluations INTEGER >= 0 ]
scaling ]
linear_inequality_constraint_matrix REALLIST ]
linear_inequality_lower_bounds REALLIST ]
linear_inequality_upper_bounds REALLIST ]
linear_inequality_scale_types STRINGLIST ]
linear_inequality_scales REALLIST ]
linear_equality_constraint_matrix REALLIST ]
linear_equality_targets REALLIST ]
linear_equality_scale_types STRINGLIST ]
linear_equality_scales REALLIST ]
model_pointer STRING ]

( dl_solver STRING
linear_inequality_constraint_matrix REALLIST ]
linear_inequality_lower_bounds REALLIST ]
linear_inequality_upper_bounds REALLIST ]
linear_inequality_scale_types STRINGLIST ]
linear_inequality_scales REALLIST ]
linear_equality_constraint_matrix REALLIST ]
linear_equality_targets REALLIST ]
linear_equality_scale_types STRINGLIST ]
linear_equality_scales REALLIST ]
max_function_evaluations INTEGER >= 0 ]
scaling ]

model_pointer STRING ]

( npsol_sgp

verify_level INTEGER ]

function_precision REAL ]
linesearch_tolerance REAL ]
convergence_tolerance REAL ]

max_iterations INTEGER >= 0 ]
constraint_tolerance REAL ]

speculative ]

max_function_evaluations INTEGER >= 0 ]
scaling ]
linear_inequality_constraint_matrix REALLIST ]
linear_inequality_lower_bounds REALLIST ]
linear_inequality_upper_bounds REALLIST ]
linear_inequality_scale_types STRINGLIST ]
linear_inequality_scales REALLIST ]
linear_equality_constraint_matrix REALLIST ]
linear_equality_targets REALLIST ]
linear_equality_scale_types STRINGLIST ]
linear_equality_scales REALLIST ]
model_pointer STRING ]

)
| nlssol_sgp

( stanford
npsol
| nlssol



4.4. INPUT SPEC SUMMARY

verify_ level INTEGER ]

function_precision REAL ]
linesearch_tolerance REAL ]
convergence_tolerance REAL ]

max_iterations INTEGER >= 0 ]
constraint_tolerance REAL ]

speculative ]

max_function_evaluations INTEGER >= 0 ]
scaling ]
linear_inequality_constraint_matrix REALLIST ]
linear_inequality_lower_bounds REALLIST ]
linear_inequality_upper_bounds REALLIST ]
linear_inequality_scale_types STRINGLIST ]
linear_inequality_scales REALLIST ]
linear_equality_constraint_matrix REALLIST ]
linear_equality_targets REALLIST ]
linear_equality_scale_types STRINGLIST ]
linear_equality_scales REALLIST ]
model_pointer STRING ]

nlpgl_sqgp
[ max_iterations INTEGER >= 0 ]
[ convergence_tolerance REAL ]
[ linear_inequality_constraint_matrix REALLIST ]
[ linear_inequality_lower_bounds REALLIST ]
[ linear_inequality_upper_bounds REALLIST ]
[ linear_inequality_scale_types STRINGLIST ]
[ linear_inequality_scales REALLIST ]
[ linear_equality_constraint_matrix REALLIST ]
[ linear_equality_targets REALLIST ]
[ linear_equality_scale_types STRINGLIST ]
[ linear_equality_scales REALLIST ]
[ max_function_evaluations INTEGER >= 0 ]
[ scaling ]
[ model_pointer STRING ]

)
|
( optpp_cg

[ max_step REAL ]
gradient_tolerance REAL ]
max_iterations INTEGER >= 0 ]
convergence_tolerance REAL ]
speculative ]
max_function_evaluations INTEGER >= 0 ]
scaling ]
linear_inequality_constraint_matrix REALLIST ]
linear_inequality_lower_bounds REALLIST ]
linear_inequality_upper_bounds REALLIST ]
linear_inequality_scale_types STRINGLIST ]
linear_inequality_scales REALLIST ]
linear_equality_constraint_matrix REALLIST ]
linear_equality_targets REALLIST ]
linear_equality_scale_types STRINGLIST ]
linear_equality_scales REALLIST ]
model_pointer STRING ]

\

( optpp_g_newton
| optpp_fd_newton
| optpp_g_newton
| optpp_newton



CHAPTER 4. DAKOTA INPUT SPECIFICATION

[ search_method

value_based_line_search

| gradient_lbased_line_search

| trust_region

| tr_pds

]
[ merit_function
el _bakry
| argaez_tapia
| van_shanno
]
steplength_to_boundary REAL ]
centering_parameter REAL ]
max_step REAL ]
gradient_tolerance REAL ]
max_iterations INTEGER >= 0 ]
convergence_tolerance REAL ]
speculative ]
max_function_evaluations INTEGER >= 0 ]
scaling ]
linear_inequality_constraint_matrix REALLIST ]
linear_inequality_lower_bounds REALLIST ]
linear_inequality_upper_bounds REALLIST ]
linear_inequality_scale_types STRINGLIST ]
linear_inequality_scales REALLIST ]
linear_equality_constraint_matrix REALLIST ]
linear_equality_targets REALLIST ]
linear_equality_scale_types STRINGLIST ]
linear_equality_scales REALLIST ]
model_pointer STRING ]

|
( optpp_pds
[ search_scheme_size INTEGER ]
[ max_iterations INTEGER >= 0 ]
[ convergence_tolerance REAL ]
[ max_function_evaluations INTEGER >= 0 ]
[ scaling ]
[ model_pointer STRING ]
)
|
( asynch_pattern_search ALIAS coliny_apps
[ initial_delta REAL ]
[ contraction_factor REAL ]
[ threshold_delta REAL ]
[ solution_target ALIAS solution_accuracy REAL ]
[ synchronization
blocking
| nonblocking
]
[ merit_function
merit_max
| merit_max_smooth
| meritl
| meritl_smooth
| merit2
| merit2_smooth
| merit2_squared
]

[ constraint_penalty REAL ]
smoothing_ factor REAL ]
linear_inequality_constraint_matrix REALLIST ]



4.4. INPUT SPEC SUMMARY

linear_inequality_lower_bounds REALLIST ]
linear_inequality_upper_bounds REALLIST ]
linear_inequality_scale_types STRINGLIST ]
linear_inequality_scales REALLIST ]
linear_equality_constraint_matrix REALLIST ]
linear_equality_targets REALLIST ]
linear_equality_scale_types STRINGLIST ]
linear_equality_scales REALLIST ]
constraint_tolerance REAL ]
max_function_evaluations INTEGER >= 0 ]
scaling ]

model_pointer STRING ]

|

( mesh_adaptive_search
function_precision REAL ]

seed INTEGER > 0 ]

history_file STRING ]
display_format STRING ]
variable_neighborhood_search REAL ]
neighbor_order INTEGER > 0 ]
display_all_evaluations ]
max_iterations INTEGER >= 0 ]
max_function_evaluations INTEGER >= 0 ]
scaling ]

model_pointer STRING ]

\
( moga
[ fitness_type
layer_rank
| domination_count
]
[ replacement_type
elitist
| roulette_wheel
| unique_roulette_wheel
\
( below_limit REAL
[ shrinkage_fraction ALIAS shrinkage_percentage REAL ]
)
]
[ niching_type
radial REALLIST
| distance REALLIST
\
( max_designs REALLIST
[ num_designs INTEGER >= 2 ]
)
]
[ convergence_type
metric_tracker
[ percent_change REAL ]
[ num_generations INTEGER >= 0 ]
]
[ postprocessor_type
orthogonal_distance REALLIST
]
max_iterations INTEGER >= 0 ]
linear_inequality_constraint_matrix REALLIST ]
linear_inequality_lower_bounds REALLIST ]
linear_inequality_upper_bounds REALLIST ]

35



36

linear_inequality_scale_types STRINGLIST ]
linear_inequality_scales REALLIST ]
linear_equality_constraint_matrix REALLIST
linear_equality_targets REALLIST ]
linear_equality_scale_types STRINGLIST ]
linear_equality_scales REALLIST ]
max_function_evaluations INTEGER >= 0 ]
scaling ]
population_size INTEGER >= 0 ]
log_file STRING ]
print_each_pop 1
initialization_type
simple_random
| unique_random
| flat_file STRING
]
crossover_type
multi_point_binary INTEGER
| multi_point_parameterized_binary INTEGER
| multi_point_real INTEGER
I
( shuffle_random
[ num_parents INTEGER > 0 ]
[ num_offspring INTEGER > 0 ]
)
[ crossover_rate REAL ]
]
mutation_type
bit_random
| replace_uniform
|
( offset_normal
| offset_cauchy
| offset_uniform
[ mutation_scale REAL ]
)
[ mutation_rate REAL ]
]
seed INTEGER > 0 ]
convergence_tolerance REAL ]
model_pointer STRING ]

( soga

[

fitness_type
merit_function
[ constraint_penalty REAL ]
]
replacement_type
elitist
| favor_feasible
| roulette_wheel
| unique_roulette_wheel
]
convergence_type
( best_fitness_tracker
[ percent_change REAL ]
[ num_generations INTEGER >= 0 ]
)
I
( average_fitness_tracker
[ percent_change REAL ]

CHAPTER 4. DAKOTA INPUT SPECIFICATION

]



4.4. INPUT SPEC SUMMARY

[ num_generations INTEGER >= 0 ]

)
]
max_iterations INTEGER >= 0 ]
linear_inequality_constraint_matrix REALLIST ]
linear_inequality_lower_bounds REALLIST ]
linear_inequality_upper_bounds REALLIST ]
linear_inequality_scale_types STRINGLIST ]
linear_inequality_scales REALLIST ]
linear_equality_constraint_matrix REALLIST ]
linear_equality_targets REALLIST ]
linear_equality_scale_types STRINGLIST ]
linear_equality_scales REALLIST ]
max_function_evaluations INTEGER >= 0 ]
scaling ]
population_size INTEGER >= 0 ]
log_file STRING ]
print_each_pop 1
initialization_type
simple_random
| unique_random
| flat_file STRING
1
crossover_type
multi_point_binary INTEGER
| multi_point_parameterized_binary INTEGER
| multi_point_real INTEGER
I
( shuffle_random

[ num_parents INTEGER > 0 ]

[ num_offspring INTEGER > 0 ]

)
[ crossover_rate REAL ]
]
mutation_type
bit_random
| replace_uniform
\
( offset_normal

| offset_cauchy

| offset_uniform

[ mutation_scale REAL ]

)
[ mutation_rate REAL ]
]
seed INTEGER > 0 ]
convergence_tolerance REAL ]
model_pointer STRING ]

( coliny_pattern_search

[
[
[
[

constant_penalty |
no_expansion ]
expand_after_success INTEGER ]
pattern_basis

coordinate

| simplex

]

stochastic ]
total_pattern_size INTEGER ]
exploratory_moves
multi_step

37



CHAPTER 4. DAKOTA INPUT SPECIFICATION

| adaptive_pattern

| basic_pattern

]
[ synchronization
blocking
| nonblocking
1
contraction_factor REAL ]
constraint_penalty REAL ]
initial_delta REAL ]
threshold_delta REAL ]
solution_target ALIAS solution_accuracy REAL ]
seed INTEGER > 0 ]
show_misc_options ]
misc_options STRINGLIST ]
max_iterations INTEGER >= 0 ]
convergence_tolerance REAL ]
max_function_evaluations INTEGER >= 0 ]
scaling ]
model_pointer STRING ]

\

( coliny_solis_wets

contract_after_failure INTEGER ]
no_expansion |

expand_after_success INTEGER ]
constant_penalty ]

contraction_factor REAL ]
constraint_penalty REAL ]

initial_delta REAL ]

threshold_delta REAL ]

solution_target ALIAS solution_accuracy REAL ]
seed INTEGER > 0 ]

show_misc_options ]

misc_options STRINGLIST ]
max_iterations INTEGER >= 0 ]
convergence_tolerance REAL ]
max_function_evaluations INTEGER >= 0 ]
scaling ]

model_pointer STRING ]

|

( coliny_cobyla

initial_delta REAL ]

threshold_delta REAL ]

solution_target ALIAS solution_accuracy REAL ]
seed INTEGER > 0 ]

show_misc_options ]

misc_options STRINGLIST ]
max_iterations INTEGER >= 0 ]
convergence_tolerance REAL ]
max_function_evaluations INTEGER >= 0 ]
scaling ]

model_pointer STRING ]

\
( coliny_direct
[ division
major_dimension
| all_dimensions
]
[ global_balance_parameter REAL ]



4.4. INPUT SPEC SUMMARY

local_balance_parameter REAL ]
max_boxsize_limit REAL ]
min_boxsize_limit REAL ]
constraint_penalty REAL ]
solution_target ALIAS solution_accuracy REAL ]
seed INTEGER > 0 ]

show_misc_options ]

misc_options STRINGLIST ]
max_iterations INTEGER >= 0 ]
convergence_tolerance REAL ]
max_function_evaluations INTEGER >= 0 ]
scaling ]

model_pointer STRING ]

|
( coliny_ea
[ population_size INTEGER > 0 ]
[ initialization_type
simple_random
| unique_random
| flat_file STRING
]
[ fitness_type
linear_rank
| merit_function
]
[ replacement_type
random INTEGER
| chc INTEGER
| elitist INTEGER
[ new_solutions_generated INTEGER ]
]
[ crossover_rate REAL ]
crossover_type
two_point
| blend
| uniform
]
mutation_rate REAL ]
mutation_type
replace_uniform
I
( offset_normal
| offset_cauchy
| offset_uniform
[ mutation_scale REAL ]
[ mutation_range INTEGER ]

)
[ non_adaptive ]
]
constraint_penalty REAL ]
solution_target ALIAS solution_accuracy REAL ]
seed INTEGER > 0 ]
show_misc_options ]
misc_options STRINGLIST ]
max_iterations INTEGER >= 0 ]
convergence_tolerance REAL ]
max_function_evaluations INTEGER >= 0 ]
scaling ]
model_pointer STRING ]

39



40

(

CHAPTER 4. DAKOTA INPUT SPECIFICATION

coliny_beta

beta_solver_name STRING

[ solution_target ALIAS solution_accuracy REAL ]
[ seed INTEGER > 0 ]

[ show_misc_options ]

[ misc_options STRINGLIST ]

[ max_iterations INTEGER >= 0 ]

[ convergence_tolerance REAL ]

[ max_function_evaluations INTEGER >= 0 ]
[ scaling ]

[ model_pointer STRING ]

)

nl2sol

[ function_precision REAL ]
[ absolute_conv_tol REAL ]
[ x_conv_tol REAL ]

[ singular_conv_tol REAL ]
[ singular_radius REAL ]
[ false_conv_tol REAL ]
[ initial_trust_radius REAL ]
[ covariance INTEGER ]
[ regression_diagnostics ]

[ convergence_tolerance REAL ]

[ max_iterations INTEGER >= 0 ]

[ speculative ]

[ max_function_evaluations INTEGER >= 0 ]
[ scaling ]

[ model_pointer STRING ]

)

nonlinear_cg

[ misc_options STRINGLIST ]

[ convergence_tolerance REAL ]
[ max_iterations INTEGER >= 0 ]
[ scaling ]

[ model pointer STRING ]

)

ncsu_direct

[ solution_target ALIAS solution_accuracy REAL ]
[ min_boxsize_limit REAL ]

[ volume_boxsize_limit REAL ]

[ convergence_tolerance REAL ]

[ max_iterations INTEGER >= 0 ]

[ max_function_evaluations INTEGER >= 0 ]

[ scaling ]

[ model_pointer STRING ]

)

genie_opt_darts

| genie_direct

[ seed INTEGER > 0 ]

[ max_function_evaluations INTEGER >= 0 ]
[ scaling ]

[ model _pointer STRING ]

)

efficient_global

[ gaussian_process ALIAS kriging
surfpack
| dakota



4.4. INPUT SPEC SUMMARY

]
use_derivatives ]
import_build_points_file ALIAS import_points_file STRING
[ annotated
I
( custom_annotated
[ header ]
[ eval_id ]
[ interface_id ]

]

\
( freeform
[ active_only 1]
]
[ export_approx_points_file ALIAS export_points_file STRING
[ annotated
\
( custom_annotated
[ header ]
[ eval_id ]
[ interface_id ]
]
\
( freeform
]
seed INTEGER > 0 ]
max_iterations INTEGER >= 0 ]
model_pointer STRING ]

|
( polynomial_chaos ALIAS nond_polynomial_chaos
[ p_refinement
uniform
|
( dimension_adaptive
sobol
| decay
| generalized
)
]
askey
wiener ]
quadrature_order INTEGERLIST
[ dimension_preference REALLIST ]
[ nested
| non_nested ]
)

sparse_grid_level INTEGERLIST
[ restricted

| unrestricted ]

[ dimension_preference REALLIST ]
[ nested

| non_nested ]

)

cubature_integrand INTEGER

expansion_order INTEGERLIST
[ dimension_preference REALLIST ]
[ basis_type

tensor_product

| total_order

41



42

|

( adapted

advancements INTEGER ]
soft_convergence_limit INTEGER ]

]

collocation_points INTEGERLIST
| collocation_ratio REAL
[ ratio_order REAL ]

[ ( least_squares

[ svd

| equality_constrained ]
)
|
(

orthogonal_matching_pursuit ALIAS omp
noise_tolerance REALLIST ]

| basis_pursuit ALIAS bp

|

( basis_pursuit_denoising ALIAS bpdn
noise_tolerance REALLIST ]

I
( least_angle_regression ALIAS lars
noise_tolerance REALLIST ]

|

( least_absolute_shrinkage ALIAS lasso
noise_tolerance REALLIST ]

12_penalty REAL ]

cross_validation ]

use_derivatives ]

tensor_grid ]

reuse_points ALIAS reuse_samples ]

expansion_samples INTEGERLIST
[ reuse_points ALIAS reuse_samples ]
[ incremental_lhs ]

)

CHAPTER 4. DAKOTA INPUT SPECIFICATION

import_build_points_file ALIAS import_points_file STRING

[ annotated

|

( custom_annotated
header ]

eval_id ]
interface_id ]

freeform
active_only ]

orthogonal_least_interpolation ALIAS least_interpolation ALIAS oli
collocation_points INTEGERLIST

[

[
[
[

cross_validation ]
tensor_grid INTEGERLIST ]
reuse_points ALIAS reuse_samples ]

import_build_points_file ALIAS import_points_file STRING

[ annotated



4.4. INPUT SPEC SUMMARY

|

( custom_annotated
header ]

eval_id ]

freeform
active_only ]

)
import_expansion_file STRING
variance_based_decomp
[ interaction_order INTEGER > 0 ]
[ drop_tolerance REAL ]
]
diagonal_covariance
full_covariance ]
normalized ]
sample_type
lhs
| random
1
[ probability_refinement ALIAS sample_refinement
import
| adapt_import
| mm_adapt_import
[ refinement_samples INTEGER ]
]
[ import_approx_points_file STRING
[ annotated
|
( custom_annotated
[ header ]
[ eval_id ]
[ interface_id ]

]

\
( freeform
[ active_only ]
]
[ export_approx_points_file ALIAS export_points_file STRING
[ annotated
I
( custom_annotated
[ header ]
[ eval_id ]
[ interface_id ]
]
|
( freeform
]
export_expansion_file STRING ]
fixed_seed ]
max_iterations INTEGER >= 0 ]
convergence_tolerance REAL ]
reliability_levels REALLIST
[ num_reliability_levels INTEGERLIST ]
]
[ response_levels REALLIST
[ num_response_levels INTEGERLIST ]
[ compute

43



44 CHAPTER 4. DAKOTA INPUT SPECIFICATION

probabilities
| reliabilities
| gen_reliabilities
[ system
series
| parallel
1

]
[ distribution
cumulative
| complementary
]
[ probability_ levels REALLIST
[ num_probability_levels INTEGERLIST ]
]
[ gen_reliability_levels REALLIST
[ num_gen_reliability_levels INTEGERLIST ]
]
[ rng
mt19937
| rnum2
1
samples INTEGER ]
seed INTEGER > 0 ]
model_pointer STRING ]

|
( stoch_collocation ALIAS nond_stoch_collocation
[ ( p_refinement
uniform
|
( dimension_adaptive

sobol

| generalized

)

h_refinement
uniform
|
( dimension_adaptive
sobol
| generalized
)
| local_adaptive
]
[ piecewise
| askey
| wiener ]
quadrature_order INTEGERLIST
\
(

sparse_grid_level INTEGERLIST

[ restricted

| unrestricted ]

[ nodal

| hierarchical ]

)

dimension_preference REALLIST ]
use_derivatives ]

nested

non_nested ]



4.4. INPUT SPEC SUMMARY

variance_based_decomp
[ interaction_order INTEGER > 0 ]
[ drop_tolerance REAL ]
]
diagonal_covariance
full_covariance ]
sample_type
lhs
| random
]
probability_refinement ALIAS sample_refinement
import
| adapt_import
| mm_adapt_import
[ refinement_samples INTEGER ]
]
import_approx_points_file STRING
[ annotated
I
( custom_annotated
[ header ]
[ eval_id ]
[ interface_id ]
]
|
( freeform
[ active_only 1
]
export_approx_points_file ALIAS export_points_file STRING
[ annotated
|
( custom_annotated
[ header ]
[ eval_id ]
[ interface_id ]
]
I
( freeform
]
fixed_seed ]
max_iterations INTEGER >= 0 ]
convergence_tolerance REAL ]
reliability_levels REALLIST
[ num_reliability_levels INTEGERLIST ]
]
response_levels REALLIST
[ num_response_levels INTEGERLIST ]
[ compute
probabilities
| reliabilities
| gen_reliabilities
[ system
series
| parallel
1

]

distribution

cumulative

| complementary

]

probability_levels REALLIST

45



46

\
(

[ num_probability_levels INTEGERLIST ]
]
[ gen_reliability_levels REALLIST
[ num_gen_reliability_ levels INTEGERLIST
]
[ rng
mt19937
| rnum2
]
samples INTEGER ]
seed INTEGER > 0 ]
[ model_pointer STRING ]

sampling ALIAS nond_sampling
[ sample_type
random
| lhs
I
( incremental_lhs
| incremental_random
previous_samples INTEGER
)
]
[ variance_based_decomp
[ drop_tolerance REAL ]
]
[ backfill ]
[ principal_components
[ percent_variance_explained REAL ]
]
fixed_seed ]
max_iterations INTEGER >= 0 ]
convergence_tolerance REAL ]
reliability_levels REALLIST
[ num_reliability_levels INTEGERLIST ]
1
[ response_levels REALLIST
[ num_response_levels INTEGERLIST ]
[ compute
probabilities
| reliabilities
| gen_reliabilities
[ system
series
| parallel
]

]
[ distribution
cumulative
| complementary
1
[ probability_levels REALLIST
[ num_probability_levels INTEGERLIST ]
]
[ gen_reliability_levels REALLIST
[ num_gen_reliability levels INTEGERLIST
]
[ rng
mt19937
| rnum2

]

]

CHAPTER 4. DAKOTA INPUT SPECIFICATION



4.4. INPUT SPEC SUMMARY

]
[ samples INTEGER ]
[ seed INTEGER > 0 ]
[ model_pointer STRING ]
)

( importance_sampling ALIAS nond_importance_sampling
import
| adapt_import
| mm_adapt_import
[ refinement_samples INTEGER ]
[ response_levels REALLIST
[ num_response_levels INTEGERLIST ]
[ compute
probabilities
| gen_reliabilities
[ system
series
| parallel
]

]

max_iterations INTEGER >= 0 ]
convergence_tolerance REAL ]
distribution

cumulative

| complementary

]

probability_levels REALLIST

[ num_probability_levels INTEGERLIST ]
]

gen_reliability_levels REALLIST

[ num_gen_reliability_levels INTEGERLIST ]
]

[ rng

mt19937

| rnum?2

]

samples INTEGER ]

seed INTEGER > 0 ]

model_pointer STRING ]

gpais ALIAS gaussian_process_adaptive_importance_sampling
[ emulator_samples INTEGER ]
[ import_build_points_file ALIAS import_points_file STRING
[ annotated
|
( custom_annotated
[ header ]
[ eval_id ]
[ interface_id ]
]
|
( freeform
[ active_only ]
]
[ export_approx_points_file ALIAS export_points_file STRING
[ annotated
I
( custom_annotated
[ header ]

47



48 CHAPTER 4. DAKOTA INPUT SPECIFICATION

[ eval_id ]
[ interface_id ]
]

|

( freeform

]
[ response_levels REALLIST
[ num_response_levels INTEGERLIST ]
[ compute
probabilities
| gen_reliabilities
[ system

series

| parallel

]

]
[ max_iterations INTEGER >= 0 ]
[ distribution
cumulative
| complementary
]
[ probability_levels REALLIST
[ num_probability_levels INTEGERLIST ]
]
[ gen_reliability_levels REALLIST
[ num_gen_reliability_ levels INTEGERLIST ]
]
[ rng
mt19937
| rnum2
]
[ samples INTEGER ]
seed INTEGER > 0 ]
model_pointer STRING ]

|
( adaptive_sampling ALIAS nond_adaptive_sampling
[ emulator_samples INTEGER ]
[ fitness_metric
predicted_variance
| distance
| gradient
]
[ batch_selection
naive
| distance_penalty
| topology
| constant_liar
]
batch_size INTEGER ]
import_build_points_file ALIAS import_points_file STRING
[ annotated
|
( custom_annotated
[ header ]
[ eval_id ]
[ interface_id ]

]

I
( freeform
[ active_only 1



4.4. INPUT SPEC SUMMARY

]

[ export_approx_points_file ALIAS export_points_file STRING
[ annotated
|
( custom_annotated

[ header ]
[ eval_id 1
[ interface_id ]
]
I
( freeform
]
[ response_levels REALLIST
[ num_response_levels INTEGERLIST ]
[ compute
probabilities
| gen_reliabilities
[ system

series

| parallel

1

1
misc_options STRINGLIST ]
max_iterations INTEGER >= 0 ]
[ distribution
cumulative
| complementary
]
[ probability_levels REALLIST
[ num_probability_levels INTEGERLIST ]
]
[ gen_reliability_levels REALLIST
[ num_gen_reliability_levels INTEGERLIST ]
]
[ rng
mt19937
| rnum?2
]
[ samples INTEGER ]
seed INTEGER > 0 ]
model_pointer STRING ]

|
( pof_darts ALIAS nond_pof_darts
[ lipschitz
local
| global
]
emulator_samples INTEGER ]
[ response_levels REALLIST
[ num_response_levels INTEGERLIST ]
[ compute
probabilities
| gen_reliabilities
[ system
series
| parallel
]

]

[ distribution

49



50

CHAPTER 4. DAKOTA INPUT SPECIFICATION

cumulative

| complementary

]

probability_levels REALLIST

[ num_probability_levels INTEGERLIST ]
]

gen_reliability_levels REALLIST

[ num_gen_reliability_ levels INTEGERLIST ]
]

rng

mt19937

| rnum2

]

samples INTEGER ]

seed INTEGER > 0 ]

model_pointer STRING ]

( rkd_darts ALIAS nond_rkd_darts

[

lipschitz
local
| global
1
emulator_samples INTEGER ]
response_levels REALLIST
[ num_response_levels INTEGERLIST ]
[ compute
probabilities
| gen_reliabilities
[ system
series
| parallel
]

]

distribution

cumulative

| complementary

]

probability_levels REALLIST

[ num_probability_levels INTEGERLIST ]
]

gen_reliability_levels REALLIST

[ num_gen_reliability_levels INTEGERLIST ]
]

rng

mt19937

| rnum2

]

samples INTEGER ]

seed INTEGER > 0 ]

model_pointer STRING ]

( efficient_subspace ALIAS nond_efficient_subspace

[

[
[
[
[
[

emulator_samples INTEGER ]

batch_size INTEGER ]

max_iterations INTEGER >= 0 ]
convergence_tolerance REAL ]
max_function_evaluations INTEGER >= 0 ]
distribution

cumulative



4.4. INPUT SPEC SUMMARY

| complementary

]

probability_levels REALLIST

[ num_probability_levels INTEGERLIST ]
]

gen_reliability_levels REALLIST

[ num_gen_reliability_levels INTEGERLIST ]
]

rng

mt19937

| rnum2

]

samples INTEGER ]

seed INTEGER > 0 ]

model_pointer STRING ]

( global_evidence ALIAS nond_global_evidence

[

[
\
[

sbo
| ego
[ gaussian_process ALIAS kriging
surfpack
| dakota
]
[ use_derivatives ]
[ import_build_points_file ALIAS import_points_file STRING
[ annotated
|
( custom_annotated
header ]
eval_id ]
interface_id ]

|
( freeform

[ active_only ]
]

[ export_approx_points_file ALIAS export_points_file STRING
[ annotated

|

( custom_annotated

header ]

eval_id ]

interface_id ]

|

( freeform

]
]
ea
lhs ]
response_levels REALLIST
[ num_response_levels INTEGERLIST ]
[ compute

probabilities

| gen_reliabilities

[ system
series
| parallel
1

51



CHAPTER 4. DAKOTA INPUT SPECIFICATION

[ distribution
cumulative
| complementary
]
[ probability_levels REALLIST
[ num_probability_levels INTEGERLIST ]
1
[ gen_reliability_levels REALLIST
[ num_gen_reliability_levels INTEGERLIST ]
]
[ rng
mt19937
| rnum2
1
[ samples INTEGER ]
seed INTEGER > 0 ]
[ model_pointer STRING ]

|
( global_interval_est ALIAS nond_global_interval_est
[ sbo
| ego
[ gaussian_process ALIAS kriging
surfpack
| dakota
]
[ use_derivatives ]
import_build_points_file ALIAS import_points_file STRING
[ annotated
|
( custom_annotated
header ]
eval_id ]
interface_id ]

|
( freeform

[ active_only ]
]

[ export_approx_points_file ALIAS export_points_file STRING
[ annotated

|

( custom_annotated

header ]

eval_id ]

interface_id ]

|
( freeform
]
]
| ea
| lhs ]
[ rng
mt19937
| rnum?2
]
[ max_iterations INTEGER >= 0 ]
[ convergence_tolerance REAL ]
[ max_function_evaluations INTEGER >= 0 ]
[ samples INTEGER ]
[ seed INTEGER > 0 ]



4.4. INPUT SPEC SUMMARY

[ model_pointer STRING ]
)
|
( bayes_calibration ALIAS nond_bayes_calibration
( queso
[ emulator
( gaussian_process ALIAS kriging
surfpack
dakota
emulator_samples INTEGER ]
posterior_adaptive ]
import_build_points_file ALIAS import_points_file STRING
[ annotated
|
( custom_annotated
[ header ]
[ eval_id ]
[ interface_id ]

]

|
( freeform

[ active_only ]
]

|
( pce
sparse_grid_level INTEGERLIST
I
( expansion_order INTEGERLIST
collocation_ratio REAL
[ posterior_adaptive ]
[ import_build_points_file ALIAS import_points_file STRING
[ annotated
|
( custom_annotated
[ header ]
[ eval_id 1]
[ interface_id ]

]

freeform
active_only ]

\
( collocation_points INTEGERLIST
[ posterior_adaptive ]
[ import_build_points_file ALIAS import_points_file STRING
[ annotated
|
( custom_annotated
[ header ]
[ eval_id 1
[ interface_id ]

]

|
( freeform

[ active_only ]
]

53



54

( sc
sparse_grid_level INTEGERLIST
)
[ use_derivatives ]
]
logit_transform ]
export_chain_points_file STRING
[ annotated
|
( custom_annotated
header ]
eval_id ]
interface_id ]

|
( freeform
]
[ dram
| delayed_rejection
| adaptive_metropolis
| metropolis_hastings
| multilevel ]
[ rng

mt19937

| rnum?2

]
[ pre_solve

sgp

| nip

]
[ proposal_covariance

( derivatives
[ proposal_updates INTEGER ]

| prior
|
( values REALLIST
diagonal
| matrix
)
|
( filename STRING
diagonal
| matrix

)

gpmsa
emulator_samples INTEGER

CHAPTER 4. DAKOTA INPUT SPECIFICATION

[ import_build_points_file ALIAS import_points_file STRING

[ annotated

|

( custom_annotated
header ]

eval_id ]
interface_id ]

freeform
active_only ]



4.4. INPUT SPEC SUMMARY

dram
delayed_rejection
adaptive_metropolis
metropolis_hastings
multilevel ]
rng
mt19937
| rnum2
]
[ pre_solve
sap
| nip
]
[ proposal_covariance
( derivatives
[ proposal_updates INTEGER ]

| prior
|
( values REALLIST
diagonal
| matrix
)
|
( filename STRING
diagonal
| matrix

)

|
( wasabi
[ emulator
( gaussian_process ALIAS kriging
surfpack
| dakota
[ emulator_samples INTEGER ]
[ posterior_adaptive ]
[ import_build_points_file ALIAS import_points_file STRING
[ annotated
|
( custom_annotated
[ header ]
[ eval_id 1
[ interface_id ]

1

|
( freeform

[ active_only ]
]

|
( pce
sparse_grid_level INTEGERLIST
I
( expansion_order INTEGERLIST
collocation_ratio REAL
[ posterior_adaptive ]
[ import_build_points_file ALIAS import_points_file STRING
[ annotated
|

( custom_annotated

55



56

[ header ]
[ eval_id ]
[ interface_id ]

]

freeform
active_only ]

I
( collocation_points INTEGERLIST
[ posterior_adaptive ]

CHAPTER 4. DAKOTA INPUT SPECIFICATION

[ import_build_points_file ALIAS import_points_file STRING

[ annotated

|

( custom_annotated
[ header ]
[ eval_id ]
[ interface_id ]

]

|
( freeform

[ active_only 1]
]

|
( sc
sparse_grid_level INTEGERLIST
)
[ use_derivatives ]
1
( data_distribution
( gaussian
means REALLIST
( covariance REALLIST
diagonal
| matrix

)

| obs_data_filename STRING
)

generate_posterior_samples
evaluate_posterior_density

1

dream
[ chains INTEGER >= 3 ]
[ num_cr INTEGER >= 1 ]
[ crossover_chain_pairs INTEGER >= 0
[ gr_threshold REAL > 0.0 ]
[ jump_step INTEGER >= 0 ]
[ emulator
( gaussian_process ALIAS kriging
surfpack
| dakota
[ emulator_samples INTEGER ]
[ posterior_adaptive ]

]

posterior_density_export_filename STRING ]
posterior_samples_export_filename STRING ]
posterior_samples_import_filename STRING ]



4.4. INPUT SPEC SUMMARY

[ import_build_points_file ALIAS import_points_file STRING
[ annotated
|
( custom_annotated
[ header ]
[ eval_id ]
[ interface_id ]

]

freeform
active_only ]

|
( pce
sparse_grid_level INTEGERLIST
|
( expansion_order INTEGERLIST
collocation_ratio REAL
[ posterior_adaptive ]
[ import_build points_file ALIAS import_points_file STRING
[ annotated
|
( custom_annotated
[ header ]
[ eval_id 1
[ interface_id ]
]

freeform
active_only ]

|
( collocation_points INTEGERLIST
[ posterior_adaptive ]
[ import_build points_file ALIAS import_points_file STRING
[ annotated
|
( custom_annotated
[ header ]
[ eval_id ]
[ interface_id ]

]

freeform
active_only ]

|
( sc
sparse_grid_level INTEGERLIST
)
[ use_derivatives ]
]
)
standardized_space ]
[ calibrate_error_multipliers
one
| per_experiment
| per_response

57



58

| both
[ hyperprior_alphas REALLIST
hyperprior_betas REALLIST
]
]
convergence_tolerance REAL ]
max_iterations INTEGER >= 0 ]
samples INTEGER ]
seed INTEGER > 0 ]
model_pointer STRING ]

( dace
grid

random

oas

lhs

oa_1lhs

box_behnken
central_composite
main_effects ]
quality_metrics ]
variance_based_decomp
[ drop_tolerance REAL ]
]

fixed_seed ]

symbols INTEGER ]
samples INTEGER ]

seed INTEGER > 0 ]
model_pointer STRING ]

( fsu_cvt

[
[
[

o
[
[
[
[

)
\

latinize ]
quality_metrics ]
variance_based_decomp

[ drop_tolerance REAL ]
]

fixed_seed ]

trial_type

grid

| halton

| random

]

num_trials INTEGER ]
max_iterations INTEGER >= 0 ]
samples INTEGER ]

seed INTEGER > 0 ]
model_pointer STRING ]

suade_moat

partitions INTEGERLIST ]
samples INTEGER ]

seed INTEGER > 0 ]
model_pointer STRING ]

( local_evidence ALIAS nond_local_evidence

[
[
[

sqp
nip ]
response_levels REALLIST

CHAPTER 4. DAKOTA INPUT SPECIFICATION



4.4. INPUT SPEC SUMMARY

[ num_response_levels INTEGERLIST ]
[ compute
probabilities
| gen_reliabilities
[ system
series
| parallel
]

]
[ probability_levels REALLIST
[ num_probability_levels INTEGERLIST ]
]
[ gen_reliability_levels REALLIST
[ num_gen_reliability_levels INTEGERLIST ]
]
[ distribution
cumulative
| complementary
]
[ model_pointer STRING ]

|
( local_interval_est ALIAS nond_local_interval_est

[ sagp

| nip ]

[ convergence_tolerance REAL ]

[ model_pointer STRING ]

)
|
( local_reliability ALIAS nond_local_reliability

[ mpp_search

x_taylor_mean
| u_taylor_mean

| x_taylor_mpp
| u_taylor_mpp
| x_two_point
| u_two_point
| no_approx
[ sap
| nip ]
[ integration

first_order

| second_order

[ probability_refinement ALIAS sample_refinement
import
| adapt_import
| mm_adapt_import
[ refinement_samples INTEGER ]
[ seed INTEGER > 0 ]
]

1
[ response_levels REALLIST
[ num_response_levels INTEGERLIST ]
[ compute
probabilities
| reliabilities
| gen_reliabilities
[ system
series
| parallel



60

CHAPTER 4. DAKOTA INPUT SPECIFICATION

]
[ reliability_levels REALLIST
[ num_reliability_levels INTEGERLIST ]
]
[ max_iterations INTEGER >= 0 ]
convergence_tolerance REAL ]
[ distribution
cumulative
| complementary
]
probability_levels REALLIST
[ num_probability_levels INTEGERLIST ]
]
gen_reliability_levels REALLIST
[ num_gen_reliability_levels INTEGERLIST ]
]
model_pointer STRING ]

global_reliability ALIAS nond_global_reliability
x_gaussian_process ALIAS x_kriging
| u_gaussian_process ALIAS u_kriging
[ surfpack
| dakota ]
[ import_build_points_file ALIAS import_points_file STRING
[ annotated
|
( custom_annotated
[ header ]
[ eval_id ]
[ interface_id ]
]
I
( freeform
[ active_only ]
]
[ export_approx_points_file ALIAS export_points_file STRING
[ annotated
|
( custom_annotated
[ header ]
[ eval_id ]
[ interface_id ]
1
|
( freeform
]
use_derivatives ]
seed INTEGER > 0 ]
[ rng
mt19937
| rnum?2
1
[ response_levels REALLIST
[ num_response_levels INTEGERLIST ]
[ compute
probabilities
| gen_reliabilities
[ system
series



4.4. INPUT SPEC SUMMARY

| parallel
]

]

max_iterations INTEGER >= 0 ]
convergence_tolerance REAL ]
distribution

cumulative

| complementary

]

probability_levels REALLIST

[ num_probability_levels INTEGERLIST ]
]

gen_reliability_ levels REALLIST

[ num_gen_reliability_levels INTEGERLIST ]
]

model_pointer STRING ]

( fsu_quasi_mc

halton

| hammersley

[ latinize ]

[ quality_metrics ]

[ variance_based_decomp
[ drop_tolerance REAL ]
]
samples INTEGER ]
fixed_sequence ]
sequence_start INTEGERLIST ]
sequence_leap INTEGERLIST ]
prime_base INTEGERLIST ]
max_iterations INTEGER >= 0 ]
model_pointer STRING ]

vector_parameter_study
final_point REALLIST

| step_vector REALLIST
num_steps INTEGER

[ model_pointer STRING ]
)

list_parameter_study
list_of_points REALLIST
\
( import_points_file STRING
[ annotated
\
( custom_annotated
[ header ]
[ eval_id ]
[ interface_id ]
]
\
( freeform
[ active_only 1]
)
[ model_pointer STRING ]
)
\

( centered_parameter_study

61



62 CHAPTER 4. DAKOTA INPUT SPECIFICATION

step_vector REALLIST

steps_per_variable ALIAS deltas_per_variable INTEGERLIST
[ model_pointer STRING ]

)

( multidim_parameter_study
partitions INTEGERLIST
[ model_pointer STRING ]
)

( richardson_extrap
estimate_order
| converge_order
| converge_goi
[ refinement_rate REAL ]
[ convergence_tolerance REAL ]
[ max_iterations INTEGER >= 0 ]
[ model_pointer STRING ]

KEYWORD model

[ id_model STRING ]

[ variables_pointer STRING ]

[ responses_pointer STRING ]

[ hierarchical_tagging ]

( single
[ interface_pointer STRING ]
)

( surrogate
[ id_surrogates INTEGERLIST ]
( global
( gaussian_process ALIAS kriging
( dakota
[ point_selection ]
[ trend
constant
| linear
| reduced_quadratic

]

|
( surfpack
[ trend
constant
| linear
| reduced_quadratic
| quadratic
]
optimization_method STRING ]
max_trials INTEGER > 0 ]
nugget REAL > 0
find_nugget INTEGER ]
correlation_lengths REALLIST ]
export_model
[ filename_prefix STRING ]
( formats
[ text_archive ]
[ binary_archive ]
[ algebraic_file ]
[ algebraic_console ]

)



4.4. INPUT SPEC SUMMARY

|
( mars
[ max_bases INTEGER ]
[ interpolation
linear
| cubic
]
[ export_model
[ filename_prefix STRING ]
( formats
[ text_archive ]
[ binary_archive ]

)

( moving_least_squares
[ basis_order ALIAS poly_order INTEGER >= 0 ]
[ weight_function INTEGER ]
[ export_model
[ filename_prefix STRING ]
( formats
[ text_archive ]
[ binary_archive ]

)

( neural_network
[ max_nodes ALIAS nodes INTEGER ]
[ range REAL ]
[ random_weight INTEGER ]
[ export_model
[ filename_prefix STRING ]
( formats
[ text_archive ]
[ binary_archive ]
[ algebraic_file ]
[ algebraic_console ]
)

( radial_basis
bases INTEGER ]
max_pts INTEGER ]
min_partition INTEGER ]
max_subsets INTEGER ]

[ export_model
[ filename_prefix STRING ]
( formats

[ text_archive ]

[ binary_archive ]
[ algebraic_file ]
[
)

[
[
[
[

algebraic_console ]



64

(

[
(

[

CHAPTER 4. DAKOTA INPUT SPECIFICATION

polynomial

basis_order INTEGER >= 0
| linear

| quadratic

| cubic

[ export_model
filename_prefix STRING ]
formats

[ text_archive ]
binary_archive ]
algebraic_file ]
algebraic_console ]

)

domain_decomposition

[ cell_type STRING ]

[ support_layers INTEGER ]
[ discontinuity_detection

jump_threshold REAL

\
]

[

[

[

gradient_threshold REAL

]

total_points INTEGER
minimum_points
recommended_points ]
dace_method_pointer STRING
actual_model_pointer STRING ]
reuse_points ALIAS reuse_samples
all

| region

| none

]

import_build_points_file ALIAS import_points_file ALIAS samples_file STRING
[ annotated

|

( custom_annotated

header ]

eval_id ]

interface_id ]

|

( freeform

[ active_only ]

]
export_approx_points_file ALIAS export_points_file STRING
[ annotated

|

( custom_annotated
header ]

eval_id ]
interface_id ]

|

( freeform

]

use_derivatives ]
correction
zeroth_order

| first_order

| second_order
additive



4.4. INPUT SPEC SUMMARY

| multiplicative
| combined
]
[ metrics ALIAS diagnostics STRINGLIST
[ cross_validation
[ folds INTEGER
| percent REAL ]

[ press |
]
[ import_challenge_points_file ALIAS challenge_points_file STRING
[ annotated
|
( custom_annotated
header ]
eval_id ]
interface_id ]

|
( freeform

[ active_only ]
]

multipoint

tana

actual_model_pointer STRING
)

local

taylor_series
actual_model_pointer STRING
)

hierarchical
low_fidelity_model_pointer STRING
high fidelity_model_pointer STRING
( correction

zeroth_order

| first_order

| second_order

additive

| multiplicative

| combined

)

|
( nested
[ optional_interface_pointer STRING
[ optional_interface_responses_pointer STRING ]
]
( sub_method_pointer STRING
[ iterator_servers INTEGER > 0 ]
[ iterator_scheduling
master
| peer
]
processors_per_iterator INTEGER > 0 ]
primary_variable_mapping STRINGLIST ]
secondary_variable_mapping STRINGLIST ]
primary_response_mapping REALLIST ]

65



66 CHAPTER 4. DAKOTA INPUT SPECIFICATION

[ secondary_response_mapping REALLIST ]
)

KEYWORD12 variables
[ id_variables STRING ]
[ active
all
| design
| uncertain
| aleatory
| epistemic
| state
]

relaxed ]

[ continuous_design INTEGER > O

initial_point ALIAS cdv_initial_point REALLIST ]
lower_bounds ALIAS cdv_lower_bounds REALLIST ]
upper_bounds ALIAS cdv_upper_bounds REALLIST ]
scale_types ALIAS cdv_scale_types STRINGLIST ]
scales ALIAS cdv_scales REALLIST ]

descriptors ALIAS cdv_descriptors STRINGLIST ]

initial_point ALIAS ddv_initial_point INTEGERLIST ]
lower_bounds ALIAS ddv_lower_bounds INTEGERLIST ]
upper_bounds ALIAS ddv_upper_bounds INTEGERLIST ]
descriptors ALIAS ddv_descriptors STRINGLIST ]

iscrete_design_set
integer INTEGER > 0
[ elements_per_variable ALIAS num_set_values INTEGERLIST ]
elements ALIAS set_values INTEGERLIST
[ categorical STRINGLIST
[ adjacency_matrix INTEGERLIST ]
]
[ initial_point INTEGERLIST ]
[ descriptors STRINGLIST ]
]
[ string INTEGER > 0
[ elements_per_variable ALIAS num_set_values INTEGERLIST ]
elements ALIAS set_values STRINGLIST
[ adjacency_matrix INTEGERLIST ]
[ initial_point STRINGLIST ]
[ descriptors STRINGLIST ]
]
[ real INTEGER > 0
[ elements_per_variable ALIAS num_set_values INTEGERLIST ]
elements ALIAS set_values REALLIST
[ categorical STRINGLIST
[ adjacency_matrix INTEGERLIST ]
]
[ initial_point REALLIST ]
[ descriptors STRINGLIST ]
]
1
[ normal_uncertain INTEGER > 0
means ALIAS nuv_means REALLIST
std_deviations ALIAS nuv_std_deviations REALLIST
[ lower_bounds ALIAS nuv_lower_bounds REALLIST ]
[ upper_bounds ALIAS nuv_upper_bounds REALLIST ]

[
[
[
[
[
[
]
[ discrete_design_range INTEGER > 0
[
[
[
[
]
d
[



4.4. INPUT SPEC SUMMARY

initial_point REALLIST ]
descriptors ALIAS nuv_descriptors STRINGLIST ]

[
[
]
[ lognormal_uncertain INTEGER > 0
( lambdas ALIAS lnuv_lambdas REALLIST
zetas ALIAS lnuv_zetas REALLIST
)

means ALIAS lnuv_means REALLIST

std_deviations ALIAS lnuv_std_deviations REALLIST
| error_factors ALIAS lnuv_error_factors REALLIST
)

[ lower_bounds ALIAS lnuv_lower_bounds REALLIST ]

[ upper_bounds ALIAS lnuv_upper_bounds REALLIST ]

[ initial_point REALLIST ]

[ descriptors ALIAS lnuv_descriptors STRINGLIST ]

1

[ uniform_uncertain INTEGER > 0
lower_bounds ALIAS uuv_lower_bounds REALLIST
upper_bounds ALIAS uuv_upper_bounds REALLIST
[ initial_point REALLIST ]
[ descriptors ALIAS uuv_descriptors STRINGLIST ]
1
[ loguniform_uncertain INTEGER > 0
lower_bounds ALIAS luuv_lower_bounds REALLIST
upper_bounds ALIAS luuv_upper_bounds REALLIST
[ initial_point REALLIST ]
[ descriptors ALIAS luuv_descriptors STRINGLIST ]
]
[ triangular_uncertain INTEGER > 0
modes ALIAS tuv_modes REALLIST
lower_bounds ALIAS tuv_lower_bounds REALLIST
upper_bounds ALIAS tuv_upper_bounds REALLIST
[ initial_point REALLIST ]
[ descriptors ALIAS tuv_descriptors STRINGLIST ]
]
[ exponential_uncertain INTEGER > 0
betas ALIAS euv_betas REALLIST
[ initial_point REALLIST ]
[ descriptors ALIAS euv_descriptors STRINGLIST ]
1
[ beta_uncertain INTEGER > 0
alphas ALIAS buv_alphas REALLIST
betas ALIAS buv_betas REALLIST
lower_bounds ALIAS buv_lower_bounds REALLIST
upper_bounds ALIAS buv_upper_bounds REALLIST
[ initial_point REALLIST ]
[ descriptors ALIAS buv_descriptors STRINGLIST ]
]
[ gamma_uncertain INTEGER > 0
alphas ALIAS gauv_alphas REALLIST
betas ALIAS gauv_petas REALLIST
[ initial_point REALLIST ]
[ descriptors ALIAS gauv_descriptors STRINGLIST ]
1
[ gumbel_uncertain INTEGER > 0
alphas ALIAS guuv_alphas REALLIST
betas ALIAS guuv_betas REALLIST
[ initial_point REALLIST ]
[ descriptors ALIAS guuv_descriptors STRINGLIST ]
]
[ frechet_uncertain INTEGER > 0



68

CHAPTER 4. DAKOTA INPUT SPECIFICATION

alphas ALIAS fuv_alphas REALLIST
betas ALIAS fuv_betas REALLIST
[ initial_point REALLIST ]
[ descriptors ALIAS fuv_descriptors STRINGLIST ]
]
weibull_uncertain INTEGER > 0
alphas ALIAS wuv_alphas REALLIST
betas ALIAS wuv_betas REALLIST
[ initial_point REALLIST ]
[ descriptors ALIAS wuv_descriptors STRINGLIST ]
]
histogram bin_uncertain INTEGER > 0
[ pairs_per_variable ALIAS num_pairs INTEGERLIST ]
abscissas ALIAS huv_bin_abscissas REALLIST
ordinates ALIAS huv_bin_ordinates REALLIST
| counts ALIAS huv_bin_counts REALLIST
[ initial_point REALLIST ]
[ descriptors ALIAS huv_bin_descriptors STRINGLIST ]
]
poisson_uncertain INTEGER > 0
lambdas REALLIST
[ initial _point INTEGERLIST ]
[ descriptors STRINGLIST ]
]
binomial_uncertain INTEGER > 0
probability_per_trial ALIAS prob_per_trial REALLIST
num_trials INTEGERLIST
[ initial_point INTEGERLIST ]
[ descriptors STRINGLIST ]
]
negative_binomial_uncertain INTEGER > 0
probability_per_trial ALIAS prob_per_trial REALLIST
num_trials INTEGERLIST
[ initial_point INTEGERLIST ]
[ descriptors STRINGLIST ]
]
geometric_uncertain INTEGER > 0
probability_per_trial ALIAS prob_per_trial REALLIST
[ initial_point INTEGERLIST ]
[ descriptors STRINGLIST ]
1
hypergeometric_uncertain INTEGER > 0
total_population INTEGERLIST
selected_population INTEGERLIST
num_drawn INTEGERLIST
[ initial_point INTEGERLIST ]
[ descriptors STRINGLIST ]
1
histogram_point_uncertain
[ integer INTEGER > 0
[ pairs_per_variable ALIAS num_pairs INTEGERLIST ]
abscissas INTEGERLIST
counts REALLIST
[ initial_point INTEGERLIST ]
[ descriptors STRINGLIST ]
]
[ string INTEGER > 0
[ pairs_per_variable ALIAS num_pairs INTEGERLIST ]
abscissas STRINGLIST
counts REALLIST
[ initial_point STRINGLIST ]
[ descriptors STRINGLIST ]



4.4. INPUT SPEC SUMMARY 69

]
[ real INTEGER > 0
[ pairs_per_variable ALIAS num_pairs INTEGERLIST ]
abscissas REALLIST
counts REALLIST
[ initial_point REALLIST ]
[ descriptors STRINGLIST ]
]
]
[ uncertain_correlation_matrix REALLIST ]
[ continuous_interval_uncertain ALIAS interval_uncertain INTEGER > 0
[ num_intervals ALIAS iuv_num_intervals INTEGERLIST ]
[ interval_probabilities ALIAS interval_probs ALIAS iuv_interval_probs REALLIST ]
lower_bounds REALLIST
upper_bounds REALLIST
[ initial_point REALLIST ]
[ descriptors ALIAS iuv_descriptors STRINGLIST ]
1
[ discrete_interval_uncertain ALIAS discrete_uncertain_range INTEGER > 0
[ num_intervals INTEGERLIST ]
[ interval_probabilities ALIAS interval_probs ALIAS range_probabilities ALIAS range_probs REALLIST ]
lower_bounds INTEGERLIST
upper_bounds INTEGERLIST
[ initial_point INTEGERLIST ]
[ descriptors STRINGLIST ]
]
[ discrete_uncertain_set
[ integer INTEGER > 0
[ elements_per_variable ALIAS num_set_values INTEGERLIST ]
elements ALIAS set_values INTEGERLIST
[ set_probabilities ALIAS set_probs REALLIST ]
[ categorical STRINGLIST ]
[ initial_point INTEGERLIST ]
[ descriptors STRINGLIST ]
]

[ string INTEGER > 0
[ elements_per_variable ALIAS num_set_values INTEGERLIST ]
elements ALIAS set_values STRINGLIST
[ set_probabilities ALIAS set_probs REALLIST ]
[ initial_point STRINGLIST ]
[ descriptors STRINGLIST ]
]
[ real INTEGER > O
[ elements_per_variable ALIAS num_set_values INTEGERLIST ]
elements ALIAS set_values REALLIST
[ set_probabilities ALIAS set_probs REALLIST ]
[ categorical STRINGLIST ]
[ initial_point REALLIST ]
[ descriptors STRINGLIST ]
]

]
[ continuous_state INTEGER > 0

[ initial_state ALIAS csv_initial_state REALLIST ]
lower_bounds ALIAS csv_lower_bounds REALLIST ]
upper_bounds ALIAS csv_upper_bounds REALLIST ]
descriptors ALIAS csv_descriptors STRINGLIST ]

1
discrete_state_range INTEGER > O

[ initial_state ALIAS dsv_initial_state INTEGERLIST ]
[ lower_bounds ALIAS dsv_lower_bounds INTEGERLIST ]

[ upper_bounds ALIAS dsv_upper_bounds INTEGERLIST ]

[ descriptors ALIAS dsv_descriptors STRINGLIST ]



70 CHAPTER 4. DAKOTA INPUT SPECIFICATION

]
[ discrete_state_set
[ integer INTEGER > 0
[ elements_per_variable ALIAS num_set_values INTEGERLIST ]
elements ALIAS set_values INTEGERLIST
[ categorical STRINGLIST ]
[ initial_state INTEGERLIST ]
[ descriptors STRINGLIST ]
]
[ string INTEGER > 0
[ elements_per_variable ALIAS num_set_values INTEGERLIST ]
elements ALIAS set_values STRINGLIST
[ initial_state STRINGLIST ]
[ descriptors STRINGLIST ]
]
[ real INTEGER > 0
[ elements_per_variable ALIAS num_set_values INTEGERLIST ]
elements ALIAS set_values REALLIST
[ categorical STRINGLIST ]
[ initial_state REALLIST ]
[ descriptors STRINGLIST ]
]

KEYWORD12 interface
[ id_interface STRING ]
[ algebraic_mappings STRING ]
[ analysis_drivers STRINGLIST
[ analysis_components STRINGLIST ]
[ input_filter STRING ]
[ output_filter STRING ]
( system
| fork
parameters_file STRING ]
results_file STRING ]
allow_existing_results ]
verbatim ]
aprepro ALIAS dprepro ]
labeled ]
file_tag ]
file_save ]
work_directory
named STRING ]
directory_tag ALIAS dir_tag ]
directory_save ALIAS dir_save ]
link_files STRINGLIST ]
copy_files STRINGLIST ]
replace |

direct

[ processors_per_analysis INTEGER > 0 ]
)
matlab

python

[ numpy ]

)

scilab

| grid

[ failure_capture



4.4. INPUT SPEC SUMMARY 71

abort
| retry INTEGER
| recover REALLIST
| continuation
]
[ deactivate
[ active_set_vector ]
[ evaluation_cache ]
[ strict_cache_equality
[ cache_tolerance REAL ]
]
[ restart_file ]
]
]
[ asynchronous
[ evaluation_concurrency INTEGER > 0 ]
[ local_evaluation_scheduling
dynamic
| static
]
[ analysis_concurrency INTEGER > 0 ]
]
evaluation_servers INTEGER > 0 ]
[ evaluation_scheduling
master
|
( peer
dynamic
| static
)
]
[ processors_per_evaluation INTEGER > 0 ]
[ analysis_servers INTEGER > 0 ]
[ analysis_scheduling
master
| peer

]

KEYWORD12 responses
[ id_responses STRING ]
[ descriptors ALIAS response_descriptors STRINGLIST ]
( objective_functions ALIAS num_objective_functions INTEGER >= 0
[ sense STRINGLIST ]
[ primary_scale_types ALIAS objective_function_scale_types STRINGLIST ]
[ primary_scales ALIAS objective_function_scales REALLIST ]
[ weights ALIAS multi_objective_weights REALLIST ]
[ nonlinear_inequality_constraints ALIAS num_nonlinear_inequality_constraints INTEGER >= 0
[ lower_bounds ALIAS nonlinear_inequality_lower_bounds REALLIST ]
[ upper_bounds ALIAS nonlinear_inequality_upper_bounds REALLIST ]
[ scale_types ALIAS nonlinear_inequality_scale_types STRINGLIST ]
[ scales ALIAS nonlinear_inequality_scales REALLIST ]
]

[ nonlinear_equality_constraints ALIAS num_nonlinear_equality_constraints INTEGER >= 0
[ targets ALIAS nonlinear_equality_targets REALLIST ]
[ scale_types ALIAS nonlinear_equality_scale_types STRINGLIST ]
[ scales ALIAS nonlinear_equality_scales REALLIST ]
]
[ scalar_objectives ALIAS num_scalar_objectives INTEGER >= 0 ]
[ field_objectives ALIAS num_field_objectives INTEGER >= 0
lengths INTEGERLIST
[ num_coordinates_per_field INTEGERLIST ]
[ read_field_coordinates ]



72

CHAPTER 4. DAKOTA INPUT SPECIFICATION

\
( calibration_terms ALIAS least_squares_terms ALIAS num_least_squares_terms INTEGER >= 0
[ scalar_calibration_terms INTEGER >= 0 ]
[ field_calibration_terms INTEGER >= 0
lengths INTEGERLIST
[ num_coordinates_per_field INTEGERLIST ]
[ read_field_coordinates ]
]
[ primary_scale_types ALIAS calibration_term_scale_types ALIAS least_squares_term_scale_types STRINGLIST
[ primary_scales ALIAS calibration_term_scales ALIAS least_squares_term scales REALLIST ]
[ weights ALIAS calibration_weights ALIAS least_squares_weights REALLIST ]
[ ( calibration_data
[ num_experiments INTEGER >= 0 ]
[ num_config_variables INTEGER >= 0 ]
[ variance_type STRINGLIST ]
[ scalar_data_file STRING
[ annotated
\
( custom_annotated
[ header ]
[ exp_id 1
]
\
( freeform
]
[ interpolate ]

)

calibration_data_file ALIAS least_squares_data_file STRING
[ annotated
\
( custom_annotated
[ header ]
[ exp_id 1]
]

\
( freeform

[ num_experiments INTEGER >= 0 ]

[ num_config_variables INTEGER >= 0 ]
[ variance_type STRINGLIST ]

]

[ nonlinear_inequality_constraints ALIAS num_nonlinear_inequality_constraints INTEGER >= 0
[ lower_bounds ALIAS nonlinear_inequality_lower_bounds REALLIST ]
[ upper_bounds ALIAS nonlinear_inequality_upper_bounds REALLIST ]
[ scale_types ALIAS nonlinear_inequality_scale_types STRINGLIST ]
[ scales ALIAS nonlinear_inequality_scales REALLIST ]
]

nonlinear_equality_constraints ALIAS num_nonlinear_equality_constraints INTEGER >= 0
[ targets ALIAS nonlinear_equality_targets REALLIST ]

[ scale_types ALIAS nonlinear_equality_scale_types STRINGLIST ]

[ scales ALIAS nonlinear_equality_scales REALLIST ]
]

|
( response_functions ALIAS num_response_functions INTEGER >= 0
[ scalar_responses ALIAS num_scalar_responses INTEGER >= 0 ]
[ field_responses ALIAS num_field_responses INTEGER >= 0
lengths INTEGERLIST
[ num_coordinates_per_field INTEGERLIST ]
[ read_field_coordinates ]

]



4.4. INPUT SPEC SUMMARY

)
no_gradients
| analytic_gradients
|
( mixed_gradients
id_numerical_gradients INTEGERLIST
id_analytic_gradients INTEGERLIST
[ method_source ]
[ ( dakota
[ ignore_bounds ]
[ relative
| absolute
| bounds ]
)
vendor ]
interval_type ]
forward
central ]
fd_step_size ALIAS fd_gradient_step_size REALLIST

\
( numerical_gradients
[ method_source ]
[ ( dakota
[ ignore_bounds ]
[ relative
| absolute
| bounds ]
)
| vendor ]
[ interval_type ]
[ forward
| central ]
[ fd_step_size ALIAS fd_gradient_step_size REALLIST
)
no_hessians
|
( numerical_hessians
[ fd_step_size ALIAS fd_hessian_step_size REALLIST ]
[ relative
| absolute
| bounds ]
[ forward
| central ]
)

( quasi_hessians
( bfgs
[ damped ]
)
| srl
)

analytic_hessians

|
|
( mixed_hessians
[ id_numerical_hessians INTEGERLIST
[ fd_step_size ALIAS fd_hessian_step_size REALLIST
]
[ relative
| absolute
| bounds ]

]

]

]

73



74

forward
central ]
id_quasi_hessians INTEGERLIST
( bfgs
[ damped 1]
)
| srl
]
id_analytic_hessians INTEGERLIST ]

CHAPTER 4. DAKOTA INPUT SPECIFICATION



Chapter 5

Topics Area

This page introduces the user to the topics used to organize keywords.
e admin
e dakota_IO
e dakota_concepts
e models
e variables
e responses
e interface
e methods
e advanced_topics

e packages

5.1 admin

Description

This is only for management while ref man is under construction

Related Topics
e empty
e problem

e not_yet_reviewed

75



76 CHAPTER 5. TOPICS AREA

Related Keywords
5.1.1 empty

Description

This topic tracks the keywords which do not have content in the reference manual

Related Topics
Related Keywords
5.1.2 problem

Description

empty

Related Topics
Related Keywords
5.1.3 not_yet reviewed

Description

Not yet reviewed.

Related Topics
Related Keywords

5.2 dakota 10

Description

Keywords and Concepts relating inputs to Dakota and outputs from Dakota

Related Topics

o dakota_inputs
e dakota_output

o file_formats

Related Keywords

e crror_file : Base filename for error redirection
e output_file : Base filename for output redirection

e input : Base filename for post-run mode data input



5.2. DAKOTA_IO 77

output : Base filename for post-run mode data output

input : Base filename for pre-run mode data input

output : Base filename for pre-run mode data output

read_restart : Base filename for restart file read

stop_restart : Evaluation ID number at which to stop reading restart file
input : Base filename for run mode data input

output : Base filename for run mode data output

write_restart : Base filename for restart file write

5.2.1 dakota_inputs

Description

empty

Related Topics

block

data_import_capabilities

Related Keywords
5.2.2 block

Description

A block is the highest level of keyword organization in Dakota. There are currently 6 blocks in the Dakota input

spec:

Related Topics

block_identifier

block_pointer

Related Keywords

environment : Top-level settings for Dakota execution

interface : Specifies how function evaluations will be performed in order to map the variables into the
responses.

method : Begins Dakota method selection and behavioral settings.
model : Specifies how variables are mapped into a set of responses
responses : Description of the model output data returned to Dakota upon evaluation of an interface.

variables : Specifies the parameter set to be iterated by a particular method.



78 CHAPTER 5. TOPICS AREA

block_identifier

Description

empty

Related Topics
Related Keywords
e id_interface : Name the interface block; helpful when there are multiple
e id_method : Name the method block; helpful when there are multiple
e id_model : Give the model block an identifying name, in case of multiple model blocks

e id_responses : Name the response block, helpful when there are multiple

block_pointer

Description

See block_pointer for details about pointers.

Related Topics
Related Keywords
e top_method_pointer : Identify which method leads the Dakota study
e model_pointer : Identifier for model block to be used by a method
e model_pointer : Identifier for model block to be used by a method
e model_pointer : Identifier for model block to be used by a method
e model_pointer : Identifier for model block to be used by a method
e method_pointer : Pointer to sub-method to apply to a surrogate or branch-and-bound sub-problem
e model_pointer : Identifier for model block to be used by a method
e model_pointer : Identifier for model block to be used by a method
e model_pointer : Identifier for model block to be used by a method
e model_pointer : Identifier for model block to be used by a method
e model_pointer : Identifier for model block to be used by a method
e model_pointer : Identifier for model block to be used by a method
e model_pointer : Identifier for model block to be used by a method
e model_pointer : Identifier for model block to be used by a method

e model_pointer : Identifier for model block to be used by a method



5.2. DAKOTA_IO

model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model _pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model _pointer :
model_pointer :

model_pointer :

Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method

Identifier for model block to be used by a method

model_pointer_list : Associate models with method names

method_pointer_list : Pointers to methods to execute sequantially or collaboratively

global_model_pointer : Pointer to model used by global method

global_method_pointer : Pointer to global method

local_model_pointer : Pointer to model used by local method

local_method_pointer : Pointer to local method

model_pointer_list : Associate models with method names

method_pointer_list : Pointers to methods to execute sequantially or collaboratively

model_pointer :
model_pointer :

model_pointer :

Identifier for model block to be used by a method
Identifier for model block to be used by a method

Identifier for model block to be used by a method

79



80

model_pointer :
model_pointer :
model_pointer :
model_pointer :

model_pointer :

method_pointer :

model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model _pointer :
model_pointer :
model_pointer :

model_pointer :

method_pointer :

model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :
model_pointer :

model_pointer :

Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method

Identifier for model block to be used by a method

Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method

Identifier for model block to be used by a method

Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method
Identifier for model block to be used by a method

Identifier for model block to be used by a method

Pointer to sub-method to run from each starting point

Pointer to optimization or least-squares sub-method

CHAPTER 5. TOPICS AREA



5.2. DAKOTA_IO

e method_pointer : Pointer to sub-method to apply to a surrogate or branch-and-bound sub-problem
e model_pointer : Identifier for model block to be used by a method

e method_pointer : Pointer to sub-method to apply to a surrogate or branch-and-bound sub-problem
e model_pointer : Identifier for model block to be used by a method

e model_pointer : Identifier for model block to be used by a method

e optional_interface_pointer : Pointer to interface that provides non-nested responses

e optional_interface_responses_pointer : Pointer to responses block that defines non-nested responses
e sub_method_pointer : The sub_-method_-pointer specifies the method block for the sub-iterator
e responses_pointer : Specify which reponses block will be used by this model block

e interface_pointer : Interface block pointer for the single model type

e dace_method_pointer : Specify a method to gather training data

e high fidelity_model_pointer : Pointer to high fidelity model

e low_fidelity_model_pointer : Pointer to low fidelity model

e actual_model_pointer : Pointer to specify a “’truth” model, from which to construct a surrogate

e actual_model_pointer : Pointer to specify a “’truth” model, from which to construct a surrogate

e variables_pointer : Specify which variables block will be included with this model block

e id_variables : Name the variables block; helpful when there are multiple

5.2.3 data_import_capabilities

Description

empty

Related Topics
Related Keywords
5.2.4 dakota_output

Description

empty

81



82 CHAPTER 5. TOPICS AREA

Related Topics
Related Keywords
e graphics : Display a 2D graphics window of variables and responses
e output_precision : Control the output precision
e results_output : (Experimental) Write a summary file containing the final results
o results_output_file : The base file name of the results file
e tabular_data : Write a tabular results file with variable and response history
e tabular_data_file : File name for tabular data output

e output : Control how much method information is written to the screen and output file

5.2.5 file_formats

Description

See sections “Inputs to Dakota” and ’Outputs from Dakota” in the Dakota User’s Manual[4].

Related Topics
Related Keywords
e annotated : Selects annotated tabular file format
e custom_annotated : Selects custom-annotated tabular file format
o freeform : Selects freeform file format
e annotated : Selects annotated tabular file format
e custom_annotated : Selects custom-annotated tabular file format
o freeform : Selects freeform file format
e annotated : Selects annotated tabular file format
e custom_annotated : Selects custom-annotated tabular file format
e freeform : Selects freeform file format
e aprepro : Write parameters files in APREPRO syntax
e labeled : Requires correct function value labels in results file
e aprepro : Write parameters files in APREPRO syntax
e labeled : Requires correct function value labels in results file
e annotated : Selects annotated tabular file format

e custom_annotated : Selects custom-annotated tabular file format



5.2. DAKOTA_IO 83

e freeform : Selects freeform file format

e active_only : Import only active variables from tabular data file
e annotated : Selects annotated tabular file format

e custom_annotated : Selects custom-annotated tabular file format
e freeform : Selects freeform file format

e active_only : Import only active variables from tabular data file
e annotated : Selects annotated tabular file format

e custom_annotated : Selects custom-annotated tabular file format
e freeform : Selects freeform file format

e active_only : Import only active variables from tabular data file
e annotated : Selects annotated tabular file format

e custom_annotated : Selects custom-annotated tabular file format
e freeform : Selects freeform file format

e active_only : Import only active variables from tabular data file
e annotated : Selects annotated tabular file format

e custom_annotated : Selects custom-annotated tabular file format
e freeform : Selects freeform file format

e active_only : Import only active variables from tabular data file
e annotated : Selects annotated tabular file format

e custom_annotated : Selects custom-annotated tabular file format
e freeform : Selects freeform file format

e active_only : Import only active variables from tabular data file
e annotated : Selects annotated tabular file format

e custom_annotated : Selects custom-annotated tabular file format
o freeform : Selects freeform file format

e active_only : Import only active variables from tabular data file
e annotated : Selects annotated tabular file format

e custom_annotated : Selects custom-annotated tabular file format
e freeform : Selects freeform file format

e active_only : Import only active variables from tabular data file



84

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file

annotated : Selects annotated tabular file format

CHAPTER 5. TOPICS AREA



5.2. DAKOTA_IO

custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format

freeform : Selects freeform file format

85



86

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file

CHAPTER 5. TOPICS AREA



5.3. DAKOTA_CONCEPTS

5.3

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format
freeform : Selects freeform file format

active_only : Import only active variables from tabular data file
annotated : Selects annotated tabular file format
custom_annotated : Selects custom-annotated tabular file format

freeform : Selects freeform file format

annotated : Selects annotated tabular file format for experiment data
custom_annotated : Selects custom-annotated tabular file format for experiment data
freeform : Selects free-form tabular file format for experiment data

annotated : Selects annotated tabular file format for experiment data
custom_annotated : Selects custom-annotated tabular file format for experiment data

freeform : Selects free-form tabular file format for experiment data

dakota_concepts

Description

Miscallaneous concepts related to Dakota operation

Related Topics

method_independent_controls
block

strategies
command_line_options
restarts

pointers

87



88

CHAPTER 5. TOPICS AREA

Related Keywords

5.3.1 method independent_controls

Description

The <method independent controls> are those controls which are valid for a variety of methods. In
some cases, these controls are abstractions which may have slightly different implementations from one method
to the next. While each of these controls is not valid for every method, the controls are valid for enough methods

that it was reasonable to consolidate the specifications.

Related Topics

linear_constraints

Related Keywords

max_iterations : Stopping criterion based on number of iterations

constraint_tolerance : The maximum allowable value of constraint violation still considered to be feasible

max_function_evaluations : Stopping criteria based on number of function evaluations

scaling : Turn on scaling for variables, responses, and constraints

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics

max_function_evaluations : Stopping criteria based on number of function evaluations



5.3. DAKOTA_CONCEPTS 89

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

constraint_tolerance : The maximum allowable value of constraint violation still considered to be feasible
convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

speculative : Compute speculative gradients

constraint_tolerance : The maximum allowable value of constraint violation still considered to be feasible
convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

speculative : Compute speculative gradients

constraint_tolerance : The maximum allowable value of constraint violation still considered to be feasible
convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

speculative : Compute speculative gradients

max_function_evaluations : Stopping criteria based on number of function evaluations

scaling : Turn on scaling for variables, responses, and constraints



90

CHAPTER 5. TOPICS AREA

constraint_tolerance : The maximum allowable value of constraint violation still considered to be feasible
convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

speculative : Compute speculative gradients

constraint_tolerance : The maximum allowable value of constraint violation still considered to be feasible
convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

speculative : Compute speculative gradients

constraint_tolerance : The maximum allowable value of constraint violation still considered to be feasible
convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

speculative : Compute speculative gradients

constraint_tolerance : The maximum allowable value of constraint violation still considered to be feasible
convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

speculative : Compute speculative gradients

constraint_tolerance : The maximum allowable value of constraint violation still considered to be feasible
convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

speculative : Compute speculative gradients



5.3. DAKOTA_CONCEPTS 91

e constraint_tolerance : The maximum allowable value of constraint violation still considered to be feasible
e convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
e max_function_evaluations : Stopping criteria based on number of function evaluations

e max_iterations : Stopping criterion based on number of iterations

e scaling : Turn on scaling for variables, responses, and constraints

e speculative : Compute speculative gradients

e max_iterations : Stopping criterion based on number of iterations

e convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
e max_function_evaluations : Stopping criteria based on number of function evaluations

e max_iterations : Stopping criterion based on number of iterations

e final_solutions : Number of designs returned as the best solutions

e max_iterations : Stopping criterion based on number of iterations

e max_iterations : Stopping criterion based on number of iterations

e max_function_evaluations : Stopping criteria based on number of function evaluations

e scaling : Turn on scaling for variables, responses, and constraints

e max_function_evaluations : Stopping criteria based on number of function evaluations

e scaling : Turn on scaling for variables, responses, and constraints

e convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
e max_function_evaluations : Stopping criteria based on number of function evaluations

e max_iterations : Stopping criterion based on number of iterations

e convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
e max_iterations : Stopping criterion based on number of iterations

e max_iterations : Stopping criterion based on number of iterations

e id_method : Name the method block; helpful when there are multiple

e convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
e max_iterations : Stopping criterion based on number of iterations

e convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
e convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
e max_iterations : Stopping criterion based on number of iterations

e max_function_evaluations : Stopping criteria based on number of function evaluations



92

CHAPTER 5. TOPICS AREA

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

speculative : Compute speculative gradients

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

constraint_tolerance : The maximum allowable value of constraint violation still considered to be feasible
convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

speculative : Compute speculative gradients

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

constraint_tolerance : The maximum allowable value of constraint violation still considered to be feasible

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics



5.3. DAKOTA_CONCEPTS

max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

speculative : Compute speculative gradients

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

speculative : Compute speculative gradients

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

speculative : Compute speculative gradients

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

speculative : Compute speculative gradients

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

speculative : Compute speculative gradients

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics

max_function_evaluations : Stopping criteria based on number of function evaluations

93



94

5.3.2

CHAPTER 5. TOPICS AREA

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

speculative : Compute speculative gradients

output : Control how much method information is written to the screen and output file
convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_iterations : Stopping criterion based on number of iterations

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_iterations : Stopping criterion based on number of iterations

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_iterations : Stopping criterion based on number of iterations

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

constraint_tolerance : The maximum allowable value of constraint violation still considered to be feasible
convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_function_evaluations : Stopping criteria based on number of function evaluations

max_iterations : Stopping criterion based on number of iterations

scaling : Turn on scaling for variables, responses, and constraints

speculative : Compute speculative gradients

convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics
max_iterations : Stopping criterion based on number of iterations

max_iterations : Stopping criterion based on number of iterations

constraint_tolerance : The maximum allowable value of constraint violation still considered to be feasible
convergence_tolerance : Stopping criterion based on convergence of the objective function or statistics

max_iterations : Stopping criterion based on number of iterations

linear_constraints

Description

Many

methods use linear equality or inequality constraints.



5.3. DAKOTA_CONCEPTS

Related Topics
Related Keywords

linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality _constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality_scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality _constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality_scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality _constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality_scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint

linear_equality_constraint_matrix : Define coefficients of the linear equalities

95



96

CHAPTER 5. TOPICS AREA

linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality_lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality _scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality _scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality_upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality _constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality_scale_types : Specify how each linear inequality constraint is scaled
linear_inequality _scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality _scales : Define the characteristic values to scale linear equalities

linear_equality_targets : Define target values for the linear equality constraints



5.3. DAKOTA_CONCEPTS

linear_inequality _constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality _scale_types : Specify how each linear inequality constraint is scaled
linear_inequality _scales : Define the characteristic values to scale linear inequalities
linear_inequality_upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality _constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality_scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality _scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality _constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality_scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality_constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality_lower_bounds : Define lower bounds for the linear inequality constraint

linear_inequality_scale_types : Specify how each linear inequality constraint is scaled

97



98

CHAPTER 5. TOPICS AREA

linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality _scales : Define the characteristic values to scale linear equalities
linear_equality _targets : Define target values for the linear equality constraints
linear_inequality _constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality_scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality_constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality_lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality_scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality _scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint

linear_equality_constraint_matrix : Define coefficients of the linear equalities



5.3. DAKOTA_CONCEPTS

linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality_lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality _scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality _constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality _scale_types : Specify how each linear inequality constraint is scaled
linear_inequality_scales : Define the characteristic values to scale linear inequalities
linear_inequality_upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality_scales : Define the characteristic values to scale linear equalities
linear_equality_targets : Define target values for the linear equality constraints
linear_inequality _constraint_matrix : Define coefficients of the linear inequality constraints
linear_inequality lower_bounds : Define lower bounds for the linear inequality constraint
linear_inequality_scale_types : Specify how each linear inequality constraint is scaled
linear_inequality _scales : Define the characteristic values to scale linear inequalities
linear_inequality _upper_bounds : Define upper bounds for the linear inequality constraint
linear_equality_constraint_matrix : Define coefficients of the linear equalities
linear_equality_scale_types : Specify how each linear equality constraint is scaled
linear_equality _scales : Define the characteristic values to scale linear equalities

linear_equality_targets : Define target values for the linear equality constraints

99



100 CHAPTER 5. TOPICS AREA

e linear_inequality_constraint_matrix : Define coefficients of the linear inequality constraints
e linear_inequality_lower_bounds : Define lower bounds for the linear inequality constraint
e linear_inequality_scale_types : Specify how each linear inequality constraint is scaled

e linear_inequality_scales : Define the characteristic values to scale linear inequalities

e linear_inequality_upper_bounds : Define upper bounds for the linear inequality constraint
e linear_equality_constraint_matrix : Define coefficients of the linear equalities

e linear_equality_scale_types : Specify how each linear equality constraint is scaled

e linear_equality_scales : Define the characteristic values to scale linear equalities

e linear_equality_targets : Define target values for the linear equality constraints

e linear_inequality_constraint_matrix : Define coefficients of the linear inequality constraints
e linear_inequality_lower_bounds : Define lower bounds for the linear inequality constraint
e linear_inequality_scale_types : Specify how each linear inequality constraint is scaled

e linear_inequality_scales : Define the characteristic values to scale linear inequalities

e linear_inequality_upper_bounds : Define upper bounds for the linear inequality constraint
e linear_equality_constraint_matrix : Define coefficients of the linear equalities

e linear_equality_scale_types : Specify how each linear equality constraint is scaled

e linear_equality_scales : Define the characteristic values to scale linear equalities

e linear_equality_targets : Define target values for the linear equality constraints

e linear_inequality_constraint_matrix : Define coefficients of the linear inequality constraints
e linear_inequality_lower_bounds : Define lower bounds for the linear inequality constraint
e linear_inequality_scale_types : Specify how each linear inequality constraint is scaled

e linear_inequality_scales : Define the characteristic values to scale linear inequalities

e linear_inequality_upper_bounds : Define upper bounds for the linear inequality constraint
e linear_equality_constraint_matrix : Define coefficients of the linear equalities

e linear_equality_scale_types : Specify how each linear equality constraint is scaled

e linear_equality_scales : Define the characteristic values to scale linear equalities

e linear_equality_targets : Define target values for the linear equality constraints

e linear_inequality_constraint_matrix : Define coefficients of the linear inequality constraints
e linear_inequality_lower_bounds : Define lower bounds for the linear inequality constraint

e linear_inequality_scale_types : Specify how each linear inequality constraint is scaled



5.3. DAKOTA_CONCEPTS 101

linear_inequality_scales : Define the characteristic values to scale linear inequalities

e linear_inequality_upper_bounds : Define upper bounds for the linear inequality constraint
e linear_equality_constraint_matrix : Define coefficients of the linear equalities

e linear_equality_scale_types : Specify how each linear equality constraint is scaled

e linear_equality_scales : Define the characteristic values to scale linear equalities

e linear_equality_targets : Define target values for the linear equality constraints

e linear_inequality_constraint_matrix : Define coefficients of the linear inequality constraints
e linear_inequality_lower_bounds : Define lower bounds for the linear inequality constraint
e linear_inequality_scale_types : Specify how each linear inequality constraint is scaled

e linear_inequality_scales : Define the characteristic values to scale linear inequalities

e linear_inequality_upper_bounds : Define upper bounds for the linear inequality constraint
e linear_equality_constraint_matrix : Define coefficients of the linear equalities

e linear_equality_scale_types : Specify how each linear equality constraint is scaled

e linear_equality_scales : Define the characteristic values to scale linear equalities

e linear_equality_targets : Define target values for the linear equality constraints

e linear_inequality_constraint_matrix : Define coefficients of the linear inequality constraints
e linear_inequality_lower_bounds : Define lower bounds for the linear inequality constraint
e linear_inequality_scale_types : Specify how each linear inequality constraint is scaled

e linear_inequality_scales : Define the characteristic values to scale linear inequalities

e linear_inequality_upper_bounds : Define upper bounds for the linear inequality constraint

5.3.3 block

Description

A block is the highest level of keyword organization in Dakota. There are currently 6 blocks in the Dakota input
spec:

Related Topics

e block_identifier

e block_pointer



102 CHAPTER 5. TOPICS AREA

Related Keywords
e environment : Top-level settings for Dakota execution

e interface : Specifies how function evaluations will be performed in order to map the variables into the
responses.

e method : Begins Dakota method selection and behavioral settings.
e model : Specifies how variables are mapped into a set of responses
e responses : Description of the model output data returned to Dakota upon evaluation of an interface.

e variables : Specifies the parameter set to be iterated by a particular method.

block_identifier

Description

empty

Related Topics
Related Keywords
e id_interface : Name the interface block; helpful when there are multiple
e id_method : Name the method block; helpful when there are multiple
e id_model : Give the model block an identifying name, in case of multiple model blocks

e id_responses : Name the response block, helpful when there are multiple

block_pointer

Description

See block_pointer for details about pointers.

Related Topics
Related Keywords
e t